Mobility Characterization in Advanced FD-SOI CMOS Devices

  • G. GhibaudoEmail author
Part of the Engineering Materials book series (ENG.MAT.)


A review of the main mobility results obtained in short channel devices (here GAA/DG, FD-SOI MOSFETs and FinFETs) are discussed for better understanding their transport limitations and performances. Regarding short channel GAA, FD-SOI and FinFET MOS devices, it has been shown that the mobility is strongly degraded at small gate length, whatever the architecture, the gate stack and the measurement method used. In particular, it has been found that, for FD-SOI, the mobility is more degraded at the top interface than at the bottom interface, revealing that defects are more numerous at the top channel region.


Gate Length Short Channel Effective Mobility Short Channel Effect Channel Mobility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been partially supported by European PULLNANO/FP6 integrated project and NANOSIL network of excellence.


  1. 1.
    Ghani, T., Armstrong, M., Auth, C., Bost, M., Charvat, P., Glass, G., Hoffmann, T., Johnson, K., Kenyon, C., Klaus, J., McIntyre, B., Mistry, K., Murth, A., Sandford, J., Silberstein, M., Sivakumar, S., Smith, P., Zawadzki, K., Thompson, S., Bohr, M.: A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors. In: IEEE Proceedings of IEDM, pp. 978–980 (2003)Google Scholar
  2. 2.
    Andrieu, F., Ernst, T., Lime, F., Rochette, F., Romanjek, K., Barraud, S., Ravit, C., Boeuf, F., Jurczak, M., Casse, M., Weber, O., Brevard, L., Reimbold, G., Ghibaudo, G., Deleonibus, S.: Experimental and comparative investigation of low and high field transport in substrate- and process-induced strained nanoscaled MOSFETs. In: IEEE/VLSI Symposium, pp. 176–178 (2005)Google Scholar
  3. 3.
    Wong, H.-S.P., Frank, D.J., Solomon, P.M.: Device design considerations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET’s at the 25 nm channel length generation. In: IEEE Proceedings of IEDM, pp. 407–410 (1998)Google Scholar
  4. 4.
    Cros, A., Romanjek, K., Fleury, D., Harrison, S., Cerutti, R., Coronel, P., Dumont, B., Pouydebasque, A., Wacquez, R., Duriez, B., Gwoziecki, R., Boeuf, F., Brut, H., Ghibaudo, G., Skotnicki, T.: Unexpected mobility degradation for very short devices: a new challenge for CMOS scaling. In: IEEE Proceedings of IEDM, pp. 439–402 (2006)Google Scholar
  5. 5.
    Lochtefeld, A., Antoniadis, D.A.: Investigating the relationship between electron mobility and velocity in deeply scaled NMOS via mechanical stress. IEEE Electron. Device Lett. 22, 591–593 (2001)CrossRefGoogle Scholar
  6. 6.
    Ghibaudo, G.: New method for the extraction of MOSFET parameters. Electron. Lett. 24, 543–545 (1988)CrossRefGoogle Scholar
  7. 7.
    Romanjek, K., Andrieu, F., Ernst, T., Ghibaudo, G.: Improved split C-V method for effective mobility extraction in sub-0.1-μm Si MOSFETs. IEEE Electron. Device Lett. 25, 583–585 (2004)Google Scholar
  8. 8.
    Lime, F., Andrieu, F., Derix, J., Ghibaudo, G., Boeuf, F., Skotnicki, T.: Low temperature characterization of effective mobility in uniaxially and biaxially strained nMOSFETs. Solid State Electron. 50, 644–649 (2006)CrossRefGoogle Scholar
  9. 9.
    Pappas, I., Ghibaudo, G., Dimitriadis, C.A., Fenouillet-Beranger, C.: Backscattering coefficient and drift-diffusion mobility extraction in short channel MOS devices. Solid State Electron. 53, 54–56 (2009)CrossRefGoogle Scholar
  10. 10.
    Pham-Nguyen, L., Fenouillet-Beranger, C., Vandooren, A., Skotnicki, T., Ghibaudo, G., Cristoloveanu, S.: In situ comparison of Si/high-kappa and Si/SiO2 channel properties in SOI MOSFETs. IEEE Electron. Device Lett. 30, 1075–1077 (2009)CrossRefGoogle Scholar
  11. 11.
    Bennamane, K., Boutchacha, T., Ghibaudo, G., Mouis, M., Collaert, N.: DC and low frequency noise characterization of FinFET devices. Solid State Electron. 53, 1263–1267 (2009)CrossRefGoogle Scholar
  12. 12.
    Lundstrom, M.: On the mobility versus drain current relation for a nanoscale MOSFET. IEEE Electron. Device Lett. 22, 293–295 (2001)CrossRefGoogle Scholar
  13. 13.
    Shur, M.S.: Low ballistic mobility in submicron HEMTs. IEEE Electron. Device Lett. 23, 511–513 (2002)CrossRefGoogle Scholar
  14. 14.
    Yang, N., Henson, W.K., Hauser, J.R., Wortman, J.J.: Estimation of the effects of remote charge scattering on electron mobility of n-MOSFET’s with ultrathin gate oxides. IEEE Trans. Electron. Devices 47, 440–447 (2000)CrossRefGoogle Scholar
  15. 15.
    Sah, C.T., Ning, T.H., Tschopp, L.L.: The scattering of electrons by surface oxide charges and by lattice vibrations at the silicon-silicon dioxide interface. Surf. Sci. 32, 561–575 (1972)CrossRefGoogle Scholar
  16. 16.
    Sun, S.C., Plummer, J.D.: Electron mobility in inversion and accumulation layers on thermally oxidized silicon surfaces. IEEE Trans. Electron. Devices 27, 1497–1508 (1980)CrossRefGoogle Scholar
  17. 17.
    Denorme, S., Mathiot, D., Dollfus, P., Mouis, M.: 2-Dimensional modelling of the enhanced diffusion in thin base N-P-N bipolar transistors after lateral ion implantations. IEEE Trans. Electron. Devices 42, 523–527 (1995)CrossRefGoogle Scholar
  18. 18.
    CEMES/CNRS: IPROS manual Monte Carlo simulation of ion implantation into real devices. Internal document, CEMES/CNRS (1994)Google Scholar
  19. 19.
    Erginsoy, C.: Neutral impurity scattering in semiconductors. Phys. Rev. 79, 1013–1014 (1950)CrossRefGoogle Scholar
  20. 20.
    Ouisse, T., Physica, B.: Neutral impurity scattering with electron screening, vol. 270, pp. 262–271 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.IMEP-LAHC, MINATEC/INPGGrenobleFrance

Personalised recommendations