Quantum Simulation of Silicon-Nanowire FETs

  • Marco PalaEmail author
Part of the Engineering Materials book series (ENG.MAT.)


We present numerical calculations of transport properties of semiconductor nanowires based on a three-dimensional (3D) self-consistent Keldysh Green’s function approach, which is able to treat quantum confinement, quasi-ballistic transport, out-of-equilibrium effects as well as the influence of elastic and inelastic scattering. We investigate the role of main scattering mechanisms responsible for mobility degradation at room temperature in ultrashort electron devices like Silicon-nanowire FETs. We consider spatial fluctuations as surface-roughness (SR) or remote-charge scattering (RCS) as main sources of elastic scattering, whereas electron–phonon (PH) interaction is assumed responsible of inelastic scattering processes. We apply these techniques to evaluate the effects of SR and RCS on the transfer characteristics and electron mobility of short-channel Silicon nanowires at room temperature and then focus on scattering-limited mobilities. Our results show that SR and RCS are mainly responsible for threshold voltage shift and sub-threshold voltage slope degradation, whereas PH scattering remains the main scattering mechanism limiting the mobility at room temperature.


Spatial Fluctuation Roughness Root Mean Square Threshold Voltage Shift Interface Layer Thickness Linear Charge Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Buran, C., Pala, M.G., Bescond, M., et al.: Three-dimensional real-space simulation of surface roughness in silicon nanowire FETs. IEEE-Trans. Elec. Dev. 56, 2186–2192 (2009)CrossRefGoogle Scholar
  2. 2.
    Ferry, K., Goodnick, S.M.: Transport in Nanostructures. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  3. 3.
    Goodnick, S.M., Ferry, D.K., Wilmsen, C.W., et al.: Surface roughness at the Si(100)-SiO2 interface. Phys. Rev. B 32, 8171–8186 (1985)CrossRefGoogle Scholar
  4. 4.
    Luisier, M., Schenk, A., Fichtner, W.: Quantum transport in two and three-dimensional nanoscale transistors: coupled mode effects in the nonequilibrium Green’s function formalism. J. Appl. Phys. 100, 043713 (2006)CrossRefGoogle Scholar
  5. 5.
    Mahan, G.D.: Many-Particle Physics. Kluwer, New York (1981)Google Scholar
  6. 6.
    Meier, Y., Wingreen, N.S.: Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. 68, 2512–2515 (1992)CrossRefGoogle Scholar
  7. 7.
    Pala, M.G., Buran, C., Poli, S., Mouis, M.: Full quantum treatment of surface roughness effects in Silicon nanowire and double gate FETs. J. Comput. Electron. 8, 374–381 (2009)CrossRefGoogle Scholar
  8. 8.
    Poli, S., Pala, M.G., Poiroux, T., Deleonibus, S., Baccarani, G.: Size dependence of surface-roughness-limited mobility in Silicon-nanowire FETs. IEEE Trans. Elecron. Dev. 55, 2968–2976 (2008)CrossRefGoogle Scholar
  9. 9.
    Poli, S., Pala, M.G., Poiroux, T.: Full quantum treatment of remote Coulomb scattering in Silicon-nanowire FETs. IEEE Trans. Electron. Dev. 56, 1191–1198 (2009)CrossRefGoogle Scholar
  10. 10.
    Poli, S., Pala, M.G.: Channel-length dependence of low-field mobility in Silicon-nanowire FETs. IEEE Electron. Dev. Lett. 30, 1212–1214 (2009)CrossRefGoogle Scholar
  11. 11.
    Rahman, A., Lundstrom, M.S.: A compact scattering model for the nanoscale double-gate MOSFET. IEEE Trans. Electron. Dev. 49, 481–489 (2002)CrossRefGoogle Scholar
  12. 12.
    Ramayya, E.B., Vasileska, D., Goodnick, S.M., Knezevic, I.: Electron transport in silicon nanowires: the role of acoustic phonon confinement and surface roughness scattering. J. Appl. Phys. 104, 063711 (2008)CrossRefGoogle Scholar
  13. 13.
    Rogdakis, K., Poli, S., Bano, E., Zekentes, K., Pala, M.G.: Phonon- and surface-roughness-limited mobility of gate-all-around 3C-SiC and Si nanowire FETs. Nanotechnology 20, 295202 (2009)CrossRefGoogle Scholar
  14. 14.
    Saito, S., Torii, K., Shimamoto, Y., et al.: Remote charge scattering limited mobility in field-effect transistors with SiO2 and Al2O3/SiO2 gate stacks. J. Appl. Phys. 98, 113706 (2005)CrossRefGoogle Scholar
  15. 15.
    Shur, M.S.: Low ballistic mobility in submicron HEMTs. IEEE Electron. Dev. Lett. 23, 511–513 (2002)CrossRefGoogle Scholar
  16. 16.
    Stern, F., Howard, W.E.: Properties of semiconductor surface inversion layers in the electric quantum limit. Phys. Rev. 163, 816–835 (1967)CrossRefGoogle Scholar
  17. 17.
    Uchida, K, Koga, J, Takagi, S: Experimental study of carrier transport mechanisms double- and single-gate ultrathin-body MOSFETs—Coulomb scattering, volume inversion, and δT SOI-induced scattering. IEDM Tech. Dig., pp. 805–808 (2003)Google Scholar
  18. 18.
    Wang, J., Polizzi, E., Gosh, A., Datta, S., Lundstrum, M.: Theoretical investigation of surface roughness scattering in silicon nanowire transistors. Appl. Phys. Lett. 87, 043101 (2005)CrossRefGoogle Scholar
  19. 19.
    Zheng, Y., Rivas, C., Lake, R., Alam, K., Boykin, T.B., Klimeck, G.: Electronic properties of silicon nanowires. IEEE Trans. Electron. Dev. 52, 1097–1103 (2005)CrossRefGoogle Scholar
  20. 20.
    Zilli, M., Esseni, D., Palestri, P., Selmi, L.: On the apparent mobility in nanometric n-MOSFETs. IEEE Electron. Dev. Lett. 28, 1036–1039 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.IMEP-LAHC (UMR 5130)Grenoble INP, MinatecGrenobleFrance

Personalised recommendations