Gate Modulated Resonant Tunneling Transistor (RT-FET): Performance Investigation of a Steep Slope, High On-Current Device Through 3D Non-Equilibrium Green Function Simulations

  • Aryan AfzalianEmail author
  • Jean-Pierre Colinge
  • Denis Flandre
Part of the Engineering Materials book series (ENG.MAT.)


Performances of a new concept of nanoscale MOSFET, the gate modulated resonant tunneling (RT)-FET, are investigated through 3D non-equilibrium green function simulations enlightening the main physical mechanisms. Modulation by gate voltage of resonant tunneling states induced by channel and additional tunnel barrier(s) enables very low RT-limited Ioff current together with high thermionic Ion current. A region of subthreshold slope values as low as 45 mV/dec is achieved just below threshold, enabling a fast transition between off and on regimes. High Ion/Ioff current ratios with low voltage operation and good delay characteristics are predicted. The 10 nm Si RT nanowire investigated here could operate with a supply voltage as low as 0.5 V, Ion/Ioff > 104 (an order of magnitude improvement compared to a classical nanowire) and low leakage.



This material is based upon works supported by FNRS Belgium and by Science Foundation Ireland under Grant 05/IN/I888. This work was supported in part by the European Community (EC) Seventh Framework Program through the Networks of Excellence NANOSIL and EUROSOI+ under Contracts 216171 and 216373.


  1. 1.
    Esaki, L.: New phenomenon in germanium narrow junction. Phys. Rev. (1958)
  2. 2.
    Appenzeller, J., et al.: Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. (2004). doi: 10.1103/PhysRevLett.93.196805
  3. 3.
    Zhang, Q., et al.: Low-subthreshold-swing tunnel transistors. IEEE Electron Dev. Lett. (2006). doi: 10.1109/LED.2006.871855
  4. 4.
    Matloubian, M., Chen, C., Mao, B.-Y., Sundaresan, R., Pollack, G.P.: Modeling of the subthreshold characteristics of SOI MOSFET’s with floating body. IEEE Trans. Electron Dev. (1990) doi: 10.1109/16.57160
  5. 5.
    Gopalakrishnan, K., Griffin, P. B., Plummer, J. D.: I-MOS: A novel semiconductor device with subthreshold slope lower than kT/q. IEDM Tech. Dig. (2002). doi: 10.1109/IEDM.2002.1175835
  6. 6.
    Abelé, N., Fritschi, R., Boucart, K., Casset, F., Ancey, P., Ionescu, A.M.: Suspended-Gate MOSFET: bringing new MEMS functionality into solid-state MOS transistor. IEDM Tech. Dig. (2005). doi: 10.1109/IEDM.2005.1609384
  7. 7.
    Salahuddin, S., Datta, S.: Use of negative capacitance to provide voltage amplification for ultralow power nanoscale devices. Nano Lett. (2008). doi: 10.1021/nl071804g
  8. 8.
    Salvatore, G., Bouvet, D., Ionescu, A.: Demonstration of subthreshold swing smaller than 60 mV/decade in Fe-FET with P(VDF-TrFE)/SiO2 gate stack. IEDM Tech. Dig. (2007). doi: 10.1109/IEDM.2008.4796642
  9. 9.
    Choi, W.Y., et al.: Tunneling field-effect transistors with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Dev. Lett. (2007). doi: 10.1109/LED.2007.901273
  10. 10.
    Khatami, Y., Banerjee, K.: Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Trans. Electron Dev. (2009). doi: 10.1109/TED.2009.2030831
  11. 11.
    Luisier, M., Klimeck, G.: Performance comparisons of tunneling field-effect transistors made of InSb, Carbon, and GaSb-InAs broken gap heterostructures. IEDM Tech. Dig. (2009). doi: 10.1109/IEDM.2009.5424280
  12. 12.
    Koswatta, S.O., et al.: 1D broken-gap tunnel transistor with MOSFET-like on-currents and sub-60 mV/dec subthreshold swing. IEDM Tech. Dig. (2009). doi: 10.1109/IEDM.2009.5424279
  13. 13.
    Afzalian, A., Colinge, J.-P., Flandre, D.: Variable barrier resonant tunneling transistor: a new path towards steep slope and high on-current? In: Proceedings EUROSOI Conference (2010)Google Scholar
  14. 14.
    Afzalian, A., Colinge, J.-P., Flandre, D.: Physics of gate modulated resonant tunneling (RT)-FETs: multi-barrier MOSFET for steep slope and high on-current. Solid State Electron. (to be published)Google Scholar
  15. 15.
    Afzalian, A., et al.: A new F(ast)-CMS NEGF Algorithm for efficient 3D simulations of Switching Characteristics enhancement in constricted Tunnel Barrier Silicon Nanowire MuGFETs. J. Comput. Electron. (2009). doi: 10.1007/s10825-009-0283-1
  16. 16.
    Colinge, J.-P., Morel, H., Chante, J.-P.: Field effect in large grain polycrystalline silicon. IEEE Trans. Electron. Dev. (1983).
  17. 17.
    Afzalian, A., Lee, C.W., Dehdashti-Akhavan, N., Yan, R., Ferain, I., Colinge, J.-P.: Quantum confinement effects in capacitance behavior of multigate silicon nanowire MOSFETs. IEEE Trans. Nanotechnol. (2010). doi: 10.1109/TNANO.2009.2039800

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Aryan Afzalian
    • 1
    • 2
    Email author
  • Jean-Pierre Colinge
    • 2
  • Denis Flandre
    • 1
  1. 1.ICTEAM InstituteUniversité Catholique de LouvainLouvain-La-NeuveBelgium
  2. 2.Tyndall National InstituteUniversity College CorkCorkIreland

Personalised recommendations