Skip to main content

Gate Modulated Resonant Tunneling Transistor (RT-FET): Performance Investigation of a Steep Slope, High On-Current Device Through 3D Non-Equilibrium Green Function Simulations

  • Chapter
  • First Online:
Semiconductor-On-Insulator Materials for Nanoelectronics Applications

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 2287 Accesses

Abstract

Performances of a new concept of nanoscale MOSFET, the gate modulated resonant tunneling (RT)-FET, are investigated through 3D non-equilibrium green function simulations enlightening the main physical mechanisms. Modulation by gate voltage of resonant tunneling states induced by channel and additional tunnel barrier(s) enables very low RT-limited Ioff current together with high thermionic Ion current. A region of subthreshold slope values as low as 45 mV/dec is achieved just below threshold, enabling a fast transition between off and on regimes. High Ion/Ioff current ratios with low voltage operation and good delay characteristics are predicted. The 10 nm Si RT nanowire investigated here could operate with a supply voltage as low as 0.5 V, Ion/Ioff > 104 (an order of magnitude improvement compared to a classical nanowire) and low leakage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Esaki, L.: New phenomenon in germanium narrow junction. Phys. Rev. http://prola.aps.org/pagegif/PR/v109/i2/p603_1/p603 (1958)

  2. Appenzeller, J., et al.: Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. (2004). doi:10.1103/PhysRevLett.93.196805

  3. Zhang, Q., et al.: Low-subthreshold-swing tunnel transistors. IEEE Electron Dev. Lett. (2006). doi:10.1109/LED.2006.871855

  4. Matloubian, M., Chen, C., Mao, B.-Y., Sundaresan, R., Pollack, G.P.: Modeling of the subthreshold characteristics of SOI MOSFET’s with floating body. IEEE Trans. Electron Dev. (1990) doi:10.1109/16.57160

  5. Gopalakrishnan, K., Griffin, P. B., Plummer, J. D.: I-MOS: A novel semiconductor device with subthreshold slope lower than kT/q. IEDM Tech. Dig. (2002). doi:10.1109/IEDM.2002.1175835

  6. Abelé, N., Fritschi, R., Boucart, K., Casset, F., Ancey, P., Ionescu, A.M.: Suspended-Gate MOSFET: bringing new MEMS functionality into solid-state MOS transistor. IEDM Tech. Dig. (2005). doi:10.1109/IEDM.2005.1609384

  7. Salahuddin, S., Datta, S.: Use of negative capacitance to provide voltage amplification for ultralow power nanoscale devices. Nano Lett. (2008). doi:10.1021/nl071804g

  8. Salvatore, G., Bouvet, D., Ionescu, A.: Demonstration of subthreshold swing smaller than 60 mV/decade in Fe-FET with P(VDF-TrFE)/SiO2 gate stack. IEDM Tech. Dig. (2007). doi:10.1109/IEDM.2008.4796642

  9. Choi, W.Y., et al.: Tunneling field-effect transistors with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Dev. Lett. (2007). doi:10.1109/LED.2007.901273

  10. Khatami, Y., Banerjee, K.: Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Trans. Electron Dev. (2009). doi:10.1109/TED.2009.2030831

  11. Luisier, M., Klimeck, G.: Performance comparisons of tunneling field-effect transistors made of InSb, Carbon, and GaSb-InAs broken gap heterostructures. IEDM Tech. Dig. (2009). doi:10.1109/IEDM.2009.5424280

  12. Koswatta, S.O., et al.: 1D broken-gap tunnel transistor with MOSFET-like on-currents and sub-60 mV/dec subthreshold swing. IEDM Tech. Dig. (2009). doi:10.1109/IEDM.2009.5424279

  13. Afzalian, A., Colinge, J.-P., Flandre, D.: Variable barrier resonant tunneling transistor: a new path towards steep slope and high on-current? In: Proceedings EUROSOI Conference (2010)

    Google Scholar 

  14. Afzalian, A., Colinge, J.-P., Flandre, D.: Physics of gate modulated resonant tunneling (RT)-FETs: multi-barrier MOSFET for steep slope and high on-current. Solid State Electron. (to be published)

    Google Scholar 

  15. Afzalian, A., et al.: A new F(ast)-CMS NEGF Algorithm for efficient 3D simulations of Switching Characteristics enhancement in constricted Tunnel Barrier Silicon Nanowire MuGFETs. J. Comput. Electron. (2009). doi:10.1007/s10825-009-0283-1

  16. Colinge, J.-P., Morel, H., Chante, J.-P.: Field effect in large grain polycrystalline silicon. IEEE Trans. Electron. Dev. (1983). http://ieeexplore.ieee.org/

  17. Afzalian, A., Lee, C.W., Dehdashti-Akhavan, N., Yan, R., Ferain, I., Colinge, J.-P.: Quantum confinement effects in capacitance behavior of multigate silicon nanowire MOSFETs. IEEE Trans. Nanotechnol. (2010). doi:10.1109/TNANO.2009.2039800

Download references

Acknowledgments

This material is based upon works supported by FNRS Belgium and by Science Foundation Ireland under Grant 05/IN/I888. This work was supported in part by the European Community (EC) Seventh Framework Program through the Networks of Excellence NANOSIL and EUROSOI+ under Contracts 216171 and 216373.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aryan Afzalian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Afzalian, A., Colinge, JP., Flandre, D. (2011). Gate Modulated Resonant Tunneling Transistor (RT-FET): Performance Investigation of a Steep Slope, High On-Current Device Through 3D Non-Equilibrium Green Function Simulations. In: Nazarov, A., Colinge, JP., Balestra, F., Raskin, JP., Gamiz, F., Lysenko, V. (eds) Semiconductor-On-Insulator Materials for Nanoelectronics Applications. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15868-1_11

Download citation

Publish with us

Policies and ethics