Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

This paper reviews the development of germanium technology for applications in high performance CMOS ICs, rf and MMICs. The paper covers the development of MOSFET technology with respect to source/drain doping and gate dielectrics. Germanium has higher junction leakage currents than silicon on account of its lower energy bandgap. It is a scarce material, expensive and the wafer size is limited. To minimize these disadvantages germanium will be employed as a thin layer on an insulator substrate. Various methods of producing germanium-on-insulator (GeOI) substrates are outlined. These include the Smart-cut process, the condensation process starting with SOI wafers and the epitaxial growth of germanium on lattice matched crystalline oxides grown on silicon substrates. Partial GeOI layer techniques reviewed are dislocation necking of solid phase epitaxial layers grown in narrow high aspect ratio trenches and liquid phase epitaxy from rapid melt germanium confined in micro-crucibles. The fabrication of germanium on dielectric substrates such as quartz, sapphire and alumina are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cresman, E.E.: The oxidation of germanium surfaces at pressures much greater than one atmosphere. J. Electrochem. Soc. 129(8), 1845–1848 (1982)

    Article  Google Scholar 

  2. Hymes, D.J., Rosenberg, J.J.: Growth and materials characterization of native germanium oxynitride thin films on germanium. J. Electrochem. Soc. 135(4), 961–965 (1988)

    Article  Google Scholar 

  3. Rosenberg, J.J., Martin, S.C.: Self-aligned germanium MOSFETs using a nitrided native oxide gate insulator. IEEE Electron Device Lett. 9(12),639–640 (1988)

    Article  Google Scholar 

  4. Martin, S.C., Hitt, L.M., Rosenberg, J.J.: p-channel germanium MOSFETs with high channel mobility. IEEE Electron Device Lett. 10(7), 325–326 (1989)

    Article  Google Scholar 

  5. Jackson, T.N., Ransom, C.M., DeGelormo, J.F.: Gate-self-aligned p-channel germanium MISFET’s. IEEE Electron Device Lett. 12(11), 605–607 (1991)

    Article  Google Scholar 

  6. Vitkavage, D.J., Fountain, G.G., Rudder, R.A., et al.: Gating of germanium surfaces using pseudomorphic silicon interlayers. Appl. Phys. Lett. 53(8), 692–694 (1988)

    Article  Google Scholar 

  7. Hattangady, S.V., Fountain, G.G., Rudder, R.A., et al.: Interface engineering with pseudormorphic interlayers: Ge metal insulator-semiconductor structures. Appl. Phys. Lett. 57(6), 581–583 (1990)

    Article  Google Scholar 

  8. Reinking, D., Kammler, M., Hoffmann, N., et al.: Ge p-MOSFETs Compatible with Si CMOS-Technology. ESSDERC, pp. 300–304 (1999)

    Google Scholar 

  9. Shang, H., Frank, M.M., Gusev, E.P., et al.: Germanium channel MOSFETs: opportunities and challenges. IBM J. Res. Dev. 50(4/5), 377–386 (2006)

    Article  Google Scholar 

  10. Kita, K., Kyuno, K., Toriumi, A.: Growth mechanism difference of sputtered HfO2 on Ge and on Si. Appl. Phys. Lett. 85(1), 52–54 (2004)

    Article  Google Scholar 

  11. Saito, S., Hosoi, T., Watanabe, H., et al.: First-principles study to obtain evidence of low interface defect density at Ge/GeO2 interfaces. Appl. Phys. Lett. 95, 11908-3 (2009)

    Google Scholar 

  12. Lee, C.H., Tabata, T., Nishimura, T., et al.: Ge/GeO2 interface control with high-pressure oxidation for improving electrical characteristics. Appl. Phys. Express 2, 071404 (2009)

    Article  Google Scholar 

  13. Li, C.X., Lai, P.T.: Wide-bandgap high-k Y2O3 as passivating interlayer for enhancing the electrical properties and high-field reliability of n-Ge metal-oxide-semiconductor capacitors with high-k HfTiO gate dielectric. Appl. Phys. Lett. 95, 22910-3 (2009)

    Google Scholar 

  14. Zhao, Y., Kita, K., Kyuno, K., Toriumi, A.: Higher-k LaYO x films with strong moisture resistance. Appl. Phys. Lett. 89, 252905 (2006)

    Article  Google Scholar 

  15. Spann, J.Y., Anderson, A., Thornton, T.J., et al.: Characterization of nickel germanide thin films for use as contacts to p-channel germanium MOSFETs. IEEE Electron Device Lett. 26(3), 151–153 (2005)

    Article  Google Scholar 

  16. Hellberg, P.E., Gagnor, A., Zhang, S.L., Petersson, C.S.: Polycrystalline Si x Ge1−x Films. J. Electrochem. Soc. 144(11), 3968–3973 (1997)

    Article  Google Scholar 

  17. Uppal, S., Willoughby, A.F.W.: Diffusion of ion implanted boron in germanium. J. Appl. Phys. 90(8), 4293–4295 (2001)

    Article  Google Scholar 

  18. Satta, A., Simoen, E., Clarysse, T., et al.: Diffusion, activation, and recrystallization of boron implanted in preamorphized and crystalline germanium. Appl. Phys. Lett. 87, 172109-3 (2005)

    Article  Google Scholar 

  19. Impellizeri, G., Mirabella, S., Bruno, E., et al.: B activation and clustering in ion-implanted Ge. J. Appl. Phys. 105, 63533-6 (2009)

    Article  Google Scholar 

  20. Chao, Y.-L., Prussin, S., Woo, J.C.S.: Preamorphization implantation-assisted boron activation in bulk germanium and germanium-on-insulator. Appl. Phys. Letts. 87, 142102-3 (2005)

    Google Scholar 

  21. Mirabella, S., Impellizzeri, G., Piro, A.M., et al.: Activation and carrier mobility in high fluence B implanted germanium. Appl. Phys. Lett. 92, 251909-3 (2008)

    Article  Google Scholar 

  22. Chui, C.O., Gopalakrishnan, K., Griffin, P.B., Plummer, J.D.: Activation and diffusion studies of ion-implanted p and n dopants in germanium. Appl. Phys. Lett. 83(16), 32753277 (2003)

    Article  Google Scholar 

  23. Satta, A., Janssens, T., Clarysse, T., et al.: P implantation doping of Ge: diffusion, activation, and recrystallization. Vac. Sci. Technol. B 24(1), 494–498 (2006)

    Article  Google Scholar 

  24. Satta, A., Simeon, E., Duffy, R., et al.: Diffusion, activation, and regrowth behavior of high dose P implants in Ge. Appl. Phys. Lett. 88, 162118-3 (2006)

    Article  Google Scholar 

  25. Carroll, M.S. Koudelka, R.: Accurate modelling of average phosphorus diffusivities in germanium after long thermal anneals: evidence of implant damage enhanced diffusivities. Semicond. Sci. Technol. 22, S164–S167 (2007)

    Article  Google Scholar 

  26. Posselt, M., Schmidt, B., Anwand, W., et al.: P implantation into preamorphized germanium and subsequent annealing: Solid phase epitaxial regrowth, P diffusion, and activation. J. Vac. Sci. Technol. B 26(1), 430–434 (2008)

    Article  Google Scholar 

  27. Koffel, S., Scheiblin, P., Claverie, A., Mazzocchi, V.: Doping of germanium by phosphorus implantation: Prediction of diffused profiles with simulation. Mater. Sci. Eng. B 154–155, 60–63 (2008)

    Article  Google Scholar 

  28. Canneaux, T., Mathiot, D., Ponpon, P., et al.: Diffusion of phosphorus implanted in germanium. Mater. Sci. Eng. B 154–199, 68–71 (2008)

    Article  Google Scholar 

  29. Kim, J., Bedell, S.W., Maurer, L., et al.: Activation of implanted n-type dopants in Ge over the active concentration of 1 × 1020 cm−3 using coimplantation of Sb and P. Electrochem. Solid State Lett. 13(1), H12–H15 (2010)

    Article  Google Scholar 

  30. Yu, H.-Y., Nishi, Y., Saraswat, K.C., Cheng, S.-L., Griffin, P.B.: Germanium in situ doped epitaxial growth on Si for high-performance n+/p junction diode. IEEE Electron Device Lett. 30(9), 1002–1004 (2009)

    Article  Google Scholar 

  31. Scappucci, G., Capellini, G., Lee, W.C.T., Simmons, M.Y.: Ultradense phosphorus in germanium delta-doped layers. Appl. Phys. Lett. 94 162106-3 (2009)

    Article  Google Scholar 

  32. Morii, K., Iwasaki, T., Nakane, R., et al.: High performance GeO2/Ge nMOSFETs with source/drain junctions formed by gas phase doping. Electron Devices Meeting (IEDM), IEEE International, pp. 1–4 (2009)

    Google Scholar 

  33. Posthuma, N.E., van der Heide, J., Flamand, G., Poortmans, J.: Emitter formation and contact realization by diffusion for germanium photovoltaic devices. IEEE Trans. Electron Devices 54(5), 1210–1215 (2007)

    Article  Google Scholar 

  34. Bruel, M.: Silicon on insulator material technology. Electron Lett. 31(14), 1201–1202 (1995)

    Article  Google Scholar 

  35. Agarwal, A., Haynes, T.E., Holland, O.W., Eaglesham, D.J.: Efficient production of silicon-on-insulator films by co-implantation of He+ with H+. Appl. Phys. Lett. 72, 1086–1088 (1998)

    Article  Google Scholar 

  36. Hurley, R.E., Wadsworth, H., Montgomery, J.H., et al.: Surface blistering of low temperature annealed hydrogen and helium co-implanted germanium and its application to splitting of bonded wafer substrates. Vacuum 83, S29–S32 (2009)

    Article  Google Scholar 

  37. Low, Y.W., Rainey, P., Hurley, R., et al.: Hydrogen implantation in Germanium. ECS Trans. 28(1), 375–383 (2010)

    Article  Google Scholar 

  38. Sedgewick, T.O.: Dominant surface electronic properties of SiO2 passivated Ge surfaces as a function of various annealing treatments. J. Appl. Phys. 39(11), 5066–5077 (1968)

    Article  Google Scholar 

  39. Ruddell, F.H., Montgomery, J.H., Gamble, H.S., Denvir, D.: Germanium MOS technology for infra-red detectors. Nucl. Inst. Method Phys. Res. A 573, 65–67 (2007)

    Article  Google Scholar 

  40. Van de Walle, C.G., Neugebauer, J.: Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423, 625–628 (2003)

    Google Scholar 

  41. Omachi, Y., Nishioka, T., Shinoda, Y.: The heteroepitaxy of Ge on Si(100) by vacuum evaporation. J. Appl. Phys. 54(9), 5466–5469 (1983)

    Article  Google Scholar 

  42. Bojarczuk, N.A., Copel, M., Guha, S., et al.: Epitaxial silicon and germanium on buried insulator heterostructures and devices. Appl. Phys. Lett. 83(26), 5443–5445 (2003)

    Article  Google Scholar 

  43. Seo, J.W., Dieker, Ch., Tapponnier, A., et al.: Epitaxial germanium-on-insulator grown on (001) Si. Microelectron. Eng. 84, 2328–2331 (2007)

    Article  Google Scholar 

  44. Guissani, A., Rodenbach, P., Zaumseil, P., et al.: Atomically smooth and single crystalline Ge(111)/cubic-Pr2O3(111)/Si(111) heterostructures: Structural and chemical composition study. J. Appl. Phys. 105, 33512-6 (2009)

    Google Scholar 

  45. http://www.iqesilicon.com

  46. Tezuka, T., Sugiyama, N., Mizuno, Y., et al.: A novel fabrication technique of ultrathin and relaxed SiGe buffer layers with high Ge fraction for sub-100 nm strained silicon-on-insulator MOSFETs. Jpn. J. Appl. Phys. 40, 2866–2874 (2001)

    Article  Google Scholar 

  47. Tezuka, T., Sugiyama, N., Takagi, S.: Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction. Appl. Phys. Lett. 79(12), 1798–1800 (2001)

    Article  Google Scholar 

  48. Tezuka, T., Nakaharai, S., Moriyama, Y., et al.: Selectively-formed high mobility SiGe-on-insulator pMOSFETs with Ge-rich strained surface channels using local condensation technique. In: Symposium on VLSI Technology. Digest of Technical Papers, pp. 198–199 (2004)

    Google Scholar 

  49. Vincent, B., Damlencourt, J.-F., Delaye, V., et al.: Stacking fault generation during relaxation of silicon germanium on insulator layers obtained by the Ge condensation technique. Appl. Phys. Lett. 90, 074101 (2007)

    Article  Google Scholar 

  50. Nakaharai, S., Tezuka, T., Hirashita, N., et al.: The generation of crystal defects in Ge-on-insulator (GOI) layers in the Ge-condensation process. Semicond. Sci. Technol. 22, S103–S106 (2007)

    Article  Google Scholar 

  51. Tezuka, T., Moriyama, Y., Nakaharai, S., et al.: Lattice relaxation and dislocation generation/annihilation in SiGe-on-insulator layers during Ge condensation process. Thin Solid Films 508, 251–255 (2006)

    Article  Google Scholar 

  52. Sugiyama, N., Nakaharai, S., Hirashita, N., et al.: The formation of SGOI structures with low dislocation density by a two-step oxidation and condensation method. Semicond. Sci. Technol. 22, S59–S62 (2007)

    Article  Google Scholar 

  53. Nguyen, Q.T., Damlencourt, J.F., Vincent, B., et al.: High quality germanium-on-insulator wafers with excellent mobility. Solid State Electron. 51, 1172–1179 (2007)

    Article  Google Scholar 

  54. Maeda, T., Ikeda, K., Nakaharai, S., et al.: Thin-body Ge-on-insulator p-channel MOSFETs with Pt germanide metal source/drain. Thid Solid Film 508, 346–350 (2006)

    Article  Google Scholar 

  55. Dissanayake, S., Tomiyama, K., Sugahara, S., et al.: High performance ultrathin (110)-oriented Ge-on-insulator p-channel metal–oxide–semiconductor field-effect transistors fabricated by Ge condensation technique. Appl. Phys. Express 3, 041302 (2010)

    Article  Google Scholar 

  56. Namra, S.: Crystallization of vacuum-evaporated germanium films by the electron beam zone-melting process. J. Appl. Phys. 37, 1929–1930 (1966)

    Article  Google Scholar 

  57. Takai, M., Tanigawa, T., Gamo, K., Namba, S.: Single Crystal germanium island on insulator by zone melting recrystallization. Jpn. J. Appl. Phys. 22(10), L624–L626 (1983)

    Article  Google Scholar 

  58. Liu, Y., Deal, M.D., Plummer, J.D.: High-quality single-crystal Ge on insulator by liquid-phase epitaxy on Si substrates. Appl. Phys. Lett. 84(14), 2563–2565 (2004)

    Article  Google Scholar 

  59. Liu, Y., Gopalafishan, K., Griffin, P.B., et al.: MOSFETs and high-speed photodetectors on Ge-on-insulator substrates fabricated using rapid melt growth. IEDM 40.4, pp. 1–4 (2004)

    Google Scholar 

  60. Tweet, D.J., Lee, J.J., Maa, J.-S., et al.: Characterization and reduction of twist in Ge on insulator produced by localized liquid phase epitaxy. Appl. Phys. Lett. 87,141908 (2005)

    Article  Google Scholar 

  61. Feng, J., Liu, Y., Griffin, P.B., Plummer, J.D.: Integration of germanium-on-insulator and silicon MOSFETs on a silicon substrate. IEEE Electron Device Lett. 27(11), 911–913 (2006)

    Article  Google Scholar 

  62. Feng, J., Woo, R., Chen, S., et al.: P-channel germanium FinFET based on rapid melt growth. IEEE Electron Device Lett. 28, 637–639 (2007)

    Article  Google Scholar 

  63. Balakumar, S., Roy, M.M., Ramamurthy, B., et al.: Fabrication aspects of germanium on insulator from sputtered Ge on Si-substrates. Electrochem. Solid State Lett. 9, G158–G160 (2006)

    Article  Google Scholar 

  64. Hashimoto, T., Yoshimoto, C., Hosoi, T., et al.: Fabrication of local Ge-on-insulator structures by lateral liquid-phase epitaxy: effect of controlling interface energy between Ge and insulators on lateral epitaxial growth. Appl. Phys. Express 2, 066502 (2009)

    Article  Google Scholar 

  65. Miyao, M., Tanaka, T., Toko, K., et al.: Giant Ge-on-insulator formation by Si–Ge mixing-triggered liquid-phase epitaxy. Appl. Phys. Express 2, 045503 (2009)

    Article  Google Scholar 

  66. Miyao, M., Tanaka, T., Toko, K., et al.: High-quality single-crystal Ge stripes on quartz substrate by rapid-melting-growth. Appl. Phys. Lett. 95, 022115 (2009)

    Article  Google Scholar 

  67. Fitzgerald, E.A., Chand, N.: Epitaxial necking in GaAs grown on pre-patterned Si substrates. J. Electr. Mater. 20, 839–844 (1991)

    Article  Google Scholar 

  68. Langdo, T.A., Leitz, C.W., Currie, M.T.: High quality Ge on Si by epitaxial necking. Appl. Phys. Lett. 76(25), 3700–3702 (2000)

    Article  Google Scholar 

  69. Li, Q., Han, S.M., Brueck, S.R.J., et al.: Selective growth of Ge on Si(100) through vias of SiO2 nanotemplate using solid source molecular beam epitaxy. Appl. Phys. Lett. 83(24), 5032–5034 (2003)

    Article  Google Scholar 

  70. Luryi, S., Suhir, E.: New approach to the high quality epitaxial growth of lattice mismatched materials. Appl. Phys. Lett. 49, 140–142 (1986)

    Article  Google Scholar 

  71. Park, J.-S., Bai, J., Curtin, M., et al.: Defect reduction of selective Ge epitaxy in trenches on Si(100) substrates using aspect ration trapping. Appl. Phys. Lett. 90, 52113-3 (2007)

    Google Scholar 

  72. Park, J.-S., Curtin, M., Hydrick, J.M., et al.: Low-defect-density Ge epitaxy on Si(100) using aspect ratio trapping and epitaxial lateral overgrowth. Electrochem. Solid State Lett. 12(4), H142–H144 (2009)

    Article  Google Scholar 

  73. Miyao, M., Toko, K., Tanaka, T., et al.: High-quality single-crystal Ge stripes on quartz substrate by rapid-melting-growth. Appl. Phys. Lett. 90, 22115-3 (2009)

    Google Scholar 

  74. Gamble, H.S., Baine, P.T., Wadsworth, H., et al.: Germanium on sapphire. Int. J. High Speed Electr. Syst. 18(4), 805–814 (2008)

    Article  Google Scholar 

  75. http://www.psemi.com

  76. Baine, P.T., Gamble, H.S., Armstrong, B.M., et al.: Germanium on sapphire by wafer bonding. Solid State Electr. 52, 1840–1844 (2008)

    Article  Google Scholar 

  77. Baine, P.T., Gamble, H.S., Armstrong, B.M., et al.: Germanium bonding to Al2O3. ECS Trans. 16(8), 407–414 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Gamble .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gamble, H. et al. (2011). Germanium Processing. In: Nazarov, A., Colinge, JP., Balestra, F., Raskin, JP., Gamiz, F., Lysenko, V. (eds) Semiconductor-On-Insulator Materials for Nanoelectronics Applications. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15868-1_1

Download citation

Publish with us

Policies and ethics