Advertisement

Germanium Processing

  • H. GambleEmail author
  • B. M. Armstrong
  • P. T. Baine
  • Y. H. Low
  • P. V. Rainey
  • S. J. N. Mitchell
  • D. W. McNeill
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

This paper reviews the development of germanium technology for applications in high performance CMOS ICs, rf and MMICs. The paper covers the development of MOSFET technology with respect to source/drain doping and gate dielectrics. Germanium has higher junction leakage currents than silicon on account of its lower energy bandgap. It is a scarce material, expensive and the wafer size is limited. To minimize these disadvantages germanium will be employed as a thin layer on an insulator substrate. Various methods of producing germanium-on-insulator (GeOI) substrates are outlined. These include the Smart-cut process, the condensation process starting with SOI wafers and the epitaxial growth of germanium on lattice matched crystalline oxides grown on silicon substrates. Partial GeOI layer techniques reviewed are dislocation necking of solid phase epitaxial layers grown in narrow high aspect ratio trenches and liquid phase epitaxy from rapid melt germanium confined in micro-crucibles. The fabrication of germanium on dielectric substrates such as quartz, sapphire and alumina are also discussed.

Keywords

SiGe Layer Solid Phase Epitaxy Single Crystal Germanium Germanium Layer Germanium Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cresman, E.E.: The oxidation of germanium surfaces at pressures much greater than one atmosphere. J. Electrochem. Soc. 129(8), 1845–1848 (1982)CrossRefGoogle Scholar
  2. 2.
    Hymes, D.J., Rosenberg, J.J.: Growth and materials characterization of native germanium oxynitride thin films on germanium. J. Electrochem. Soc. 135(4), 961–965 (1988)CrossRefGoogle Scholar
  3. 3.
    Rosenberg, J.J., Martin, S.C.: Self-aligned germanium MOSFETs using a nitrided native oxide gate insulator. IEEE Electron Device Lett. 9(12),639–640 (1988)CrossRefGoogle Scholar
  4. 4.
    Martin, S.C., Hitt, L.M., Rosenberg, J.J.: p-channel germanium MOSFETs with high channel mobility. IEEE Electron Device Lett. 10(7), 325–326 (1989)CrossRefGoogle Scholar
  5. 5.
    Jackson, T.N., Ransom, C.M., DeGelormo, J.F.: Gate-self-aligned p-channel germanium MISFET’s. IEEE Electron Device Lett. 12(11), 605–607 (1991)CrossRefGoogle Scholar
  6. 6.
    Vitkavage, D.J., Fountain, G.G., Rudder, R.A., et al.: Gating of germanium surfaces using pseudomorphic silicon interlayers. Appl. Phys. Lett. 53(8), 692–694 (1988)CrossRefGoogle Scholar
  7. 7.
    Hattangady, S.V., Fountain, G.G., Rudder, R.A., et al.: Interface engineering with pseudormorphic interlayers: Ge metal insulator-semiconductor structures. Appl. Phys. Lett. 57(6), 581–583 (1990)CrossRefGoogle Scholar
  8. 8.
    Reinking, D., Kammler, M., Hoffmann, N., et al.: Ge p-MOSFETs Compatible with Si CMOS-Technology. ESSDERC, pp. 300–304 (1999)Google Scholar
  9. 9.
    Shang, H., Frank, M.M., Gusev, E.P., et al.: Germanium channel MOSFETs: opportunities and challenges. IBM J. Res. Dev. 50(4/5), 377–386 (2006)CrossRefGoogle Scholar
  10. 10.
    Kita, K., Kyuno, K., Toriumi, A.: Growth mechanism difference of sputtered HfO2 on Ge and on Si. Appl. Phys. Lett. 85(1), 52–54 (2004)CrossRefGoogle Scholar
  11. 11.
    Saito, S., Hosoi, T., Watanabe, H., et al.: First-principles study to obtain evidence of low interface defect density at Ge/GeO2 interfaces. Appl. Phys. Lett. 95, 11908-3 (2009)Google Scholar
  12. 12.
    Lee, C.H., Tabata, T., Nishimura, T., et al.: Ge/GeO2 interface control with high-pressure oxidation for improving electrical characteristics. Appl. Phys. Express 2, 071404 (2009)CrossRefGoogle Scholar
  13. 13.
    Li, C.X., Lai, P.T.: Wide-bandgap high-k Y2O3 as passivating interlayer for enhancing the electrical properties and high-field reliability of n-Ge metal-oxide-semiconductor capacitors with high-k HfTiO gate dielectric. Appl. Phys. Lett. 95, 22910-3 (2009)Google Scholar
  14. 14.
    Zhao, Y., Kita, K., Kyuno, K., Toriumi, A.: Higher-k LaYOx films with strong moisture resistance. Appl. Phys. Lett. 89, 252905 (2006)CrossRefGoogle Scholar
  15. 15.
    Spann, J.Y., Anderson, A., Thornton, T.J., et al.: Characterization of nickel germanide thin films for use as contacts to p-channel germanium MOSFETs. IEEE Electron Device Lett. 26(3), 151–153 (2005)CrossRefGoogle Scholar
  16. 16.
    Hellberg, P.E., Gagnor, A., Zhang, S.L., Petersson, C.S.: Polycrystalline SixGe1−x Films. J. Electrochem. Soc. 144(11), 3968–3973 (1997)CrossRefGoogle Scholar
  17. 17.
    Uppal, S., Willoughby, A.F.W.: Diffusion of ion implanted boron in germanium. J. Appl. Phys. 90(8), 4293–4295 (2001)CrossRefGoogle Scholar
  18. 18.
    Satta, A., Simoen, E., Clarysse, T., et al.: Diffusion, activation, and recrystallization of boron implanted in preamorphized and crystalline germanium. Appl. Phys. Lett. 87, 172109-3 (2005)CrossRefGoogle Scholar
  19. 19.
    Impellizeri, G., Mirabella, S., Bruno, E., et al.: B activation and clustering in ion-implanted Ge. J. Appl. Phys. 105, 63533-6 (2009)CrossRefGoogle Scholar
  20. 20.
    Chao, Y.-L., Prussin, S., Woo, J.C.S.: Preamorphization implantation-assisted boron activation in bulk germanium and germanium-on-insulator. Appl. Phys. Letts. 87, 142102-3 (2005)Google Scholar
  21. 21.
    Mirabella, S., Impellizzeri, G., Piro, A.M., et al.: Activation and carrier mobility in high fluence B implanted germanium. Appl. Phys. Lett. 92, 251909-3 (2008)CrossRefGoogle Scholar
  22. 22.
    Chui, C.O., Gopalakrishnan, K., Griffin, P.B., Plummer, J.D.: Activation and diffusion studies of ion-implanted p and n dopants in germanium. Appl. Phys. Lett. 83(16), 32753277 (2003)CrossRefGoogle Scholar
  23. 23.
    Satta, A., Janssens, T., Clarysse, T., et al.: P implantation doping of Ge: diffusion, activation, and recrystallization. Vac. Sci. Technol. B 24(1), 494–498 (2006)CrossRefGoogle Scholar
  24. 24.
    Satta, A., Simeon, E., Duffy, R., et al.: Diffusion, activation, and regrowth behavior of high dose P implants in Ge. Appl. Phys. Lett. 88, 162118-3 (2006)CrossRefGoogle Scholar
  25. 25.
    Carroll, M.S. Koudelka, R.: Accurate modelling of average phosphorus diffusivities in germanium after long thermal anneals: evidence of implant damage enhanced diffusivities. Semicond. Sci. Technol. 22, S164–S167 (2007)CrossRefGoogle Scholar
  26. 26.
    Posselt, M., Schmidt, B., Anwand, W., et al.: P implantation into preamorphized germanium and subsequent annealing: Solid phase epitaxial regrowth, P diffusion, and activation. J. Vac. Sci. Technol. B 26(1), 430–434 (2008)CrossRefGoogle Scholar
  27. 27.
    Koffel, S., Scheiblin, P., Claverie, A., Mazzocchi, V.: Doping of germanium by phosphorus implantation: Prediction of diffused profiles with simulation. Mater. Sci. Eng. B 154–155, 60–63 (2008)CrossRefGoogle Scholar
  28. 28.
    Canneaux, T., Mathiot, D., Ponpon, P., et al.: Diffusion of phosphorus implanted in germanium. Mater. Sci. Eng. B 154–199, 68–71 (2008)CrossRefGoogle Scholar
  29. 29.
    Kim, J., Bedell, S.W., Maurer, L., et al.: Activation of implanted n-type dopants in Ge over the active concentration of 1 × 1020 cm−3 using coimplantation of Sb and P. Electrochem. Solid State Lett. 13(1), H12–H15 (2010)CrossRefGoogle Scholar
  30. 30.
    Yu, H.-Y., Nishi, Y., Saraswat, K.C., Cheng, S.-L., Griffin, P.B.: Germanium in situ doped epitaxial growth on Si for high-performance n+/p junction diode. IEEE Electron Device Lett. 30(9), 1002–1004 (2009)CrossRefGoogle Scholar
  31. 31.
    Scappucci, G., Capellini, G., Lee, W.C.T., Simmons, M.Y.: Ultradense phosphorus in germanium delta-doped layers. Appl. Phys. Lett. 94 162106-3 (2009)CrossRefGoogle Scholar
  32. 32.
    Morii, K., Iwasaki, T., Nakane, R., et al.: High performance GeO2/Ge nMOSFETs with source/drain junctions formed by gas phase doping. Electron Devices Meeting (IEDM), IEEE International, pp. 1–4 (2009)Google Scholar
  33. 33.
    Posthuma, N.E., van der Heide, J., Flamand, G., Poortmans, J.: Emitter formation and contact realization by diffusion for germanium photovoltaic devices. IEEE Trans. Electron Devices 54(5), 1210–1215 (2007)CrossRefGoogle Scholar
  34. 34.
    Bruel, M.: Silicon on insulator material technology. Electron Lett. 31(14), 1201–1202 (1995)CrossRefGoogle Scholar
  35. 35.
    Agarwal, A., Haynes, T.E., Holland, O.W., Eaglesham, D.J.: Efficient production of silicon-on-insulator films by co-implantation of He+ with H+. Appl. Phys. Lett. 72, 1086–1088 (1998)CrossRefGoogle Scholar
  36. 36.
    Hurley, R.E., Wadsworth, H., Montgomery, J.H., et al.: Surface blistering of low temperature annealed hydrogen and helium co-implanted germanium and its application to splitting of bonded wafer substrates. Vacuum 83, S29–S32 (2009)CrossRefGoogle Scholar
  37. 37.
    Low, Y.W., Rainey, P., Hurley, R., et al.: Hydrogen implantation in Germanium. ECS Trans. 28(1), 375–383 (2010)CrossRefGoogle Scholar
  38. 38.
    Sedgewick, T.O.: Dominant surface electronic properties of SiO2 passivated Ge surfaces as a function of various annealing treatments. J. Appl. Phys. 39(11), 5066–5077 (1968)CrossRefGoogle Scholar
  39. 39.
    Ruddell, F.H., Montgomery, J.H., Gamble, H.S., Denvir, D.: Germanium MOS technology for infra-red detectors. Nucl. Inst. Method Phys. Res. A 573, 65–67 (2007)CrossRefGoogle Scholar
  40. 40.
    Van de Walle, C.G., Neugebauer, J.: Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423, 625–628 (2003)Google Scholar
  41. 41.
    Omachi, Y., Nishioka, T., Shinoda, Y.: The heteroepitaxy of Ge on Si(100) by vacuum evaporation. J. Appl. Phys. 54(9), 5466–5469 (1983)CrossRefGoogle Scholar
  42. 42.
    Bojarczuk, N.A., Copel, M., Guha, S., et al.: Epitaxial silicon and germanium on buried insulator heterostructures and devices. Appl. Phys. Lett. 83(26), 5443–5445 (2003)CrossRefGoogle Scholar
  43. 43.
    Seo, J.W., Dieker, Ch., Tapponnier, A., et al.: Epitaxial germanium-on-insulator grown on (001) Si. Microelectron. Eng. 84, 2328–2331 (2007)CrossRefGoogle Scholar
  44. 44.
    Guissani, A., Rodenbach, P., Zaumseil, P., et al.: Atomically smooth and single crystalline Ge(111)/cubic-Pr2O3(111)/Si(111) heterostructures: Structural and chemical composition study. J. Appl. Phys. 105, 33512-6 (2009)Google Scholar
  45. 45.
  46. 46.
    Tezuka, T., Sugiyama, N., Mizuno, Y., et al.: A novel fabrication technique of ultrathin and relaxed SiGe buffer layers with high Ge fraction for sub-100 nm strained silicon-on-insulator MOSFETs. Jpn. J. Appl. Phys. 40, 2866–2874 (2001)CrossRefGoogle Scholar
  47. 47.
    Tezuka, T., Sugiyama, N., Takagi, S.: Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction. Appl. Phys. Lett. 79(12), 1798–1800 (2001)CrossRefGoogle Scholar
  48. 48.
    Tezuka, T., Nakaharai, S., Moriyama, Y., et al.: Selectively-formed high mobility SiGe-on-insulator pMOSFETs with Ge-rich strained surface channels using local condensation technique. In: Symposium on VLSI Technology. Digest of Technical Papers, pp. 198–199 (2004)Google Scholar
  49. 49.
    Vincent, B., Damlencourt, J.-F., Delaye, V., et al.: Stacking fault generation during relaxation of silicon germanium on insulator layers obtained by the Ge condensation technique. Appl. Phys. Lett. 90, 074101 (2007)CrossRefGoogle Scholar
  50. 50.
    Nakaharai, S., Tezuka, T., Hirashita, N., et al.: The generation of crystal defects in Ge-on-insulator (GOI) layers in the Ge-condensation process. Semicond. Sci. Technol. 22, S103–S106 (2007)CrossRefGoogle Scholar
  51. 51.
    Tezuka, T., Moriyama, Y., Nakaharai, S., et al.: Lattice relaxation and dislocation generation/annihilation in SiGe-on-insulator layers during Ge condensation process. Thin Solid Films 508, 251–255 (2006)CrossRefGoogle Scholar
  52. 52.
    Sugiyama, N., Nakaharai, S., Hirashita, N., et al.: The formation of SGOI structures with low dislocation density by a two-step oxidation and condensation method. Semicond. Sci. Technol. 22, S59–S62 (2007)CrossRefGoogle Scholar
  53. 53.
    Nguyen, Q.T., Damlencourt, J.F., Vincent, B., et al.: High quality germanium-on-insulator wafers with excellent mobility. Solid State Electron. 51, 1172–1179 (2007)CrossRefGoogle Scholar
  54. 54.
    Maeda, T., Ikeda, K., Nakaharai, S., et al.: Thin-body Ge-on-insulator p-channel MOSFETs with Pt germanide metal source/drain. Thid Solid Film 508, 346–350 (2006)CrossRefGoogle Scholar
  55. 55.
    Dissanayake, S., Tomiyama, K., Sugahara, S., et al.: High performance ultrathin (110)-oriented Ge-on-insulator p-channel metal–oxide–semiconductor field-effect transistors fabricated by Ge condensation technique. Appl. Phys. Express 3, 041302 (2010)CrossRefGoogle Scholar
  56. 56.
    Namra, S.: Crystallization of vacuum-evaporated germanium films by the electron beam zone-melting process. J. Appl. Phys. 37, 1929–1930 (1966)CrossRefGoogle Scholar
  57. 57.
    Takai, M., Tanigawa, T., Gamo, K., Namba, S.: Single Crystal germanium island on insulator by zone melting recrystallization. Jpn. J. Appl. Phys. 22(10), L624–L626 (1983)CrossRefGoogle Scholar
  58. 58.
    Liu, Y., Deal, M.D., Plummer, J.D.: High-quality single-crystal Ge on insulator by liquid-phase epitaxy on Si substrates. Appl. Phys. Lett. 84(14), 2563–2565 (2004)CrossRefGoogle Scholar
  59. 59.
    Liu, Y., Gopalafishan, K., Griffin, P.B., et al.: MOSFETs and high-speed photodetectors on Ge-on-insulator substrates fabricated using rapid melt growth. IEDM 40.4, pp. 1–4 (2004)Google Scholar
  60. 60.
    Tweet, D.J., Lee, J.J., Maa, J.-S., et al.: Characterization and reduction of twist in Ge on insulator produced by localized liquid phase epitaxy. Appl. Phys. Lett. 87,141908 (2005) CrossRefGoogle Scholar
  61. 61.
    Feng, J., Liu, Y., Griffin, P.B., Plummer, J.D.: Integration of germanium-on-insulator and silicon MOSFETs on a silicon substrate. IEEE Electron Device Lett. 27(11), 911–913 (2006)CrossRefGoogle Scholar
  62. 62.
    Feng, J., Woo, R., Chen, S., et al.: P-channel germanium FinFET based on rapid melt growth. IEEE Electron Device Lett. 28, 637–639 (2007)CrossRefGoogle Scholar
  63. 63.
    Balakumar, S., Roy, M.M., Ramamurthy, B., et al.: Fabrication aspects of germanium on insulator from sputtered Ge on Si-substrates. Electrochem. Solid State Lett. 9, G158–G160 (2006)CrossRefGoogle Scholar
  64. 64.
    Hashimoto, T., Yoshimoto, C., Hosoi, T., et al.: Fabrication of local Ge-on-insulator structures by lateral liquid-phase epitaxy: effect of controlling interface energy between Ge and insulators on lateral epitaxial growth. Appl. Phys. Express 2, 066502 (2009)CrossRefGoogle Scholar
  65. 65.
    Miyao, M., Tanaka, T., Toko, K., et al.: Giant Ge-on-insulator formation by Si–Ge mixing-triggered liquid-phase epitaxy. Appl. Phys. Express 2, 045503 (2009)CrossRefGoogle Scholar
  66. 66.
    Miyao, M., Tanaka, T., Toko, K., et al.: High-quality single-crystal Ge stripes on quartz substrate by rapid-melting-growth. Appl. Phys. Lett. 95, 022115 (2009)CrossRefGoogle Scholar
  67. 67.
    Fitzgerald, E.A., Chand, N.: Epitaxial necking in GaAs grown on pre-patterned Si substrates. J. Electr. Mater. 20, 839–844 (1991)CrossRefGoogle Scholar
  68. 68.
    Langdo, T.A., Leitz, C.W., Currie, M.T.: High quality Ge on Si by epitaxial necking. Appl. Phys. Lett. 76(25), 3700–3702 (2000)CrossRefGoogle Scholar
  69. 69.
    Li, Q., Han, S.M., Brueck, S.R.J., et al.: Selective growth of Ge on Si(100) through vias of SiO2 nanotemplate using solid source molecular beam epitaxy. Appl. Phys. Lett. 83(24), 5032–5034 (2003)CrossRefGoogle Scholar
  70. 70.
    Luryi, S., Suhir, E.: New approach to the high quality epitaxial growth of lattice mismatched materials. Appl. Phys. Lett. 49, 140–142 (1986)CrossRefGoogle Scholar
  71. 71.
    Park, J.-S., Bai, J., Curtin, M., et al.: Defect reduction of selective Ge epitaxy in trenches on Si(100) substrates using aspect ration trapping. Appl. Phys. Lett. 90, 52113-3 (2007)Google Scholar
  72. 72.
    Park, J.-S., Curtin, M., Hydrick, J.M., et al.: Low-defect-density Ge epitaxy on Si(100) using aspect ratio trapping and epitaxial lateral overgrowth. Electrochem. Solid State Lett. 12(4), H142–H144 (2009)CrossRefGoogle Scholar
  73. 73.
    Miyao, M., Toko, K., Tanaka, T., et al.: High-quality single-crystal Ge stripes on quartz substrate by rapid-melting-growth. Appl. Phys. Lett. 90, 22115-3 (2009)Google Scholar
  74. 74.
    Gamble, H.S., Baine, P.T., Wadsworth, H., et al.: Germanium on sapphire. Int. J. High Speed Electr. Syst. 18(4), 805–814 (2008)CrossRefGoogle Scholar
  75. 75.
  76. 76.
    Baine, P.T., Gamble, H.S., Armstrong, B.M., et al.: Germanium on sapphire by wafer bonding. Solid State Electr. 52, 1840–1844 (2008)CrossRefGoogle Scholar
  77. 77.
    Baine, P.T., Gamble, H.S., Armstrong, B.M., et al.: Germanium bonding to Al2O3. ECS Trans. 16(8), 407–414 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • H. Gamble
    • 1
    Email author
  • B. M. Armstrong
    • 1
  • P. T. Baine
    • 1
  • Y. H. Low
    • 1
  • P. V. Rainey
    • 1
  • S. J. N. Mitchell
    • 1
  • D. W. McNeill
    • 1
  1. 1.School of Electronics, Electrical Engineering and Computer ScienceThe Queen’s University of BelfastBelfastIreland

Personalised recommendations