Advertisement

Optical Spectroscopy of Wide-Gap Diluted Magnetic Semiconductors

  • Wojciech Pacuski
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 144)

Abstract

We focus here on striking differences between the physics of diluted magnetic semiconductors described in the preceding Chapter and those whose constituent semiconductor matrix is a wide gap material, as exemplified primarily by ZnO and GaN. We demonstrate the importance of two effects, usually negligible in moderate and narrow gap semiconductors: electron–hole exchange in excitons and small spin–orbit splitting of the valence band, both producing deviations from proportionality of giant Zeeman splitting to magnetization. We also show that the sp − d exchange constants, expected to be large, do not result in very large exciton spin splitting. Therefore, a notion of apparent exchange constants is introduced and discussed.

Keywords

Valence Band Circular Polarization Orbit Coupling Magnetic Circular Dichroism Orbital Momentum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Results reviewed in this Chapter originate from collaborations with A. Bonanni, E. Chikoidze, C. Deparis, T. Dietl, Y. Dumont, H. Mariette, J. Kossut, C. Morhain, A. Navarro-Quezada, E. Przeździecka, E. Sarigiannidou, P. Sati, A. Stepanov, M. Wegscheider, and many others. We acknowledge for their contribution. Special thanks should be given to J. Cibert, D. Ferrand, J.A. Gaj, and P. Kossacki, who were the supervisors of my thesis devoted to the spectroscopy of wide-gap DMSs [45].

We acknowledge financial support from the Polish Ministry of Science and Higher Education, the French Ministry of Foreign Affairs, the Marie Curie Actions (contract number MTKD-CT-2005-029671), the Foundation for Polish Science, the Deutscher Akademischer Austausch Dienst, and the Alexander von Humboldt Foundation.

References

  1. 1.
    T. Dietl, H. Ohno, F. Matsukura, Phys. Rev. B 63, 195205 (2001)CrossRefADSGoogle Scholar
  2. 2.
    J.I. Hwang et al., Phys. Rev. B 72, 085216 (2005)CrossRefADSGoogle Scholar
  3. 3.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)CrossRefADSGoogle Scholar
  4. 4.
    S.I. Gubarev, Zh. Eksp. Teor. Fiz 80, 1174 (1983)Google Scholar
  5. 5.
    M. Nawrocki, J.P. Lascaray, D. Coquillat, M. Demianiuk, in Diluted Magnetic (Semimagnetic) Semiconductors, eds. by S. von Molnar, R. Aggarwal, J.K. Furdyna, Math. Res. Soc. Symp. Proc. 89, 65 (1987)Google Scholar
  6. 6.
    C. Benoit à la Guillaume, D. Scalbert, T. Dietl, Phys. Rev. B 46, 9853 (1992)Google Scholar
  7. 7.
    R. Pappalardo, D.L. Wood, R.C. Linares Jr, J. Chem. Phys. 35, 2041 (1961)CrossRefADSGoogle Scholar
  8. 8.
    R.S. Anderson, Phys. Rev. 164, 398 (1967)CrossRefADSGoogle Scholar
  9. 9.
    P. Koidl, Phys. Rev. B 15, 2493 (1977)CrossRefADSGoogle Scholar
  10. 10.
    H.-J. Schulz, M. Thiede, Phys. Rev. B 35, 18 (1987)CrossRefADSGoogle Scholar
  11. 11.
    R. Heitz, A. Hoffmann, I. Broser, Phys. Rev. B 45, 8977 (1992)CrossRefADSGoogle Scholar
  12. 12.
    K. Sato, H. Katayama-Yoshida, Jpn. J. Appl. Phys., Part 2, 39, L555 (2000)Google Scholar
  13. 13.
    J. Blinowski, P. Kacman, T. Dietl, Math. Res. Soc. Symp. Proc. 690; arXiv: cond-mat/0201012 (2002)Google Scholar
  14. 14.
    N.A. Spaldin, Phys. Rev. B 69, 125201 (2004)CrossRefADSGoogle Scholar
  15. 15.
    H. Hori et al., Phys. B: Condens. Matter 324, 142 (2002)CrossRefADSGoogle Scholar
  16. 16.
    V.A. Chitta et al., Appl. Phys. Lett. 85, 3777 (2004)CrossRefADSGoogle Scholar
  17. 17.
    K.R. Kittilstved, N.S. Norberg, D.R. Gamelin, Phys. Rev. Lett. 94, 147209 (2005)CrossRefADSGoogle Scholar
  18. 18.
    K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001)CrossRefADSGoogle Scholar
  19. 19.
    S.-W. Lim, D.-K. Hwang, J.-M. Myoung, Solid State Commun. 125, 231 (2003)CrossRefADSGoogle Scholar
  20. 20.
    K. Rode et al., J. Appl. Phys. 93, 7676 (2003)CrossRefADSGoogle Scholar
  21. 21.
    S. Ramachandran, A. Tiwari, J. Narayan, Appl. Phys. Lett. 84, 5255 (2004)CrossRefADSGoogle Scholar
  22. 22.
    A.C. Tuan et al., Phys. Rev. B 70, 054424 (2004)CrossRefADSGoogle Scholar
  23. 23.
    M. Venkatesan, C.B. Fitzgerald, J.G. Lunney, J.M.D. Coey, Phys. Rev. Lett. 93, 177206 (2004)CrossRefADSGoogle Scholar
  24. 24.
    K. Ando, H. Saito, V. Zayets, M.C. Debnath, J. Phys. Condens. Matter 16, S5541 (2004)CrossRefADSGoogle Scholar
  25. 25.
    W. Pacuski et al., Phys. Rev. B 73, 035214 (2006)CrossRefADSGoogle Scholar
  26. 26.
    J. Lagois, Phys. Rev. B 16, 1699 (1977)CrossRefADSGoogle Scholar
  27. 27.
    J. Lagois, Phys. Rev. B 23, 5511 (1981)CrossRefADSGoogle Scholar
  28. 28.
    D.W. Langer, R.N. Euwema, K. Era, T. Koda, Phys. Rev. B 2, 4005 (1970)CrossRefADSGoogle Scholar
  29. 29.
    D.C. Reynolds et al., Phys. Rev. B 60, 2340 (1999)CrossRefADSGoogle Scholar
  30. 30.
    B. Gil et al., Jpn. J. Appl. Phys. 40, L 1089 (2001)Google Scholar
  31. 31.
    B. Gil, Phys. Rev. B 64, 201310 (2001)CrossRefADSGoogle Scholar
  32. 32.
    W.R.L. Lambrecht, A.V. Rodina, S. Limpijumnong, B. Segall, B.K. Meyer, Phys. Rev. B 65, 075207 (2002)CrossRefADSGoogle Scholar
  33. 33.
    T. Gruber et al., J. Appl. Phys. 96, 289 (2004)CrossRefADSGoogle Scholar
  34. 34.
    D.G. Thomas, J. Phys. Chem. Solids 15, 86 (1960)CrossRefADSGoogle Scholar
  35. 35.
    R. Stępniewski et al., Phys. Rev. B 60, 4438 (1999)CrossRefADSGoogle Scholar
  36. 36.
    W. Pacuski et al., Phys. Rev. Lett. 100, 037204 (2008)CrossRefADSGoogle Scholar
  37. 37.
    W. Pacuski et al., Phys. Rev. B 76, 165304 (2007)CrossRefADSGoogle Scholar
  38. 38.
    M. Dobrowolska, D. Dobrowolski, R.R. Galazka, A. Mycielski, Phys. Stat. Sol. B 105, 477 (1981)CrossRefADSGoogle Scholar
  39. 39.
    E. Przeździecka et al., Solid State Commun. 139, 541 (2006)CrossRefADSGoogle Scholar
  40. 40.
    J.F. Muth et al., Appl. Phys. Lett. 71, 2572 (1997)CrossRefADSGoogle Scholar
  41. 41.
    E. Chikoidze, Y. Dumont, H. von Bardeleben, W. Pacuski, O. Gorochova, Superlattice. Microstruct. 42, 176 (2007)CrossRefADSGoogle Scholar
  42. 42.
    D.A. Schwartz, N.S. Norberg, Q.P. Nguyen, J.M. Parker, D.R. Gamelin, J. Am. Chem. Soc. 125, 13205 (2003)CrossRefGoogle Scholar
  43. 43.
    K. Ando, 7th Symposium PASPS 2001, condmat/0208010 (2002)Google Scholar
  44. 44.
    K.R. Kittilstved et al., Appl. Phys. Lett. 89, 062510 (2006)CrossRefADSGoogle Scholar
  45. 45.
    W. Pacuski, Ph. D. thesis, University of Warsaw and Université Joseph Fourier, Grenoble, http://tel.archives-ouvertes.fr, 2008
  46. 46.
    J. Gaj, R. Planel, G. Fishman, Solid State Commun. 29, 435 (1979)CrossRefADSGoogle Scholar
  47. 47.
    A. Twardowski, P. Swiderski, M. von Ortenberg, R. Pauthenet, Solid State Commun. 50, 509 (1984)CrossRefADSGoogle Scholar
  48. 48.
    A. Twardowski, P. Swiderski, M. von Ortenberg, R. Pauthenet, Solid State Commun. 51, 849 (1984)CrossRefADSGoogle Scholar
  49. 49.
    B.E. Larson, K.C. Hass, H. Ehrenreich, A.E. Carlsson, Phys. Rev. B 37, 4137 (1988)CrossRefADSGoogle Scholar
  50. 50.
    J.R. Schrieffer, P.A. Wolff, Phys. Rev. 149, 491 (1966)CrossRefADSGoogle Scholar
  51. 51.
    J.R. Schrieffer, J. Appl. Phys. 38, 1143 (1967)CrossRefADSGoogle Scholar
  52. 52.
    J. Blinowski, P. Kacman, Acta Phys. Pol. A 100, 343 (2001)ADSGoogle Scholar
  53. 53.
    J. Okabayashi et al., Phys. Rev. B 58, R4211 (1998)CrossRefADSGoogle Scholar
  54. 54.
    J. Okabayashi et al., Phys. Rev. B 59, R2486 (1999)CrossRefADSGoogle Scholar
  55. 55.
    T. Mizokawa, T. Nambu, A. Fujimori, T. Fukumura, M. Kawasaki, Phys. Rev. B 65, 085209 (2002)CrossRefADSGoogle Scholar
  56. 56.
    J. Okabayashi et al., Phys. Rev. B 65, 161203 (2002)CrossRefADSGoogle Scholar
  57. 57.
    J. Okabayashi et al., J. Appl. Phys. 95, 3573 (2004)CrossRefADSGoogle Scholar
  58. 58.
    T. Dietl, Exchange Interactions and Nanoscale Phase Separations in Magnetically Doped Semiconductors, in Spintronics, eds. by T. Dietl, D.D. Awschalom, M. Kaminska, H. Ohno. Semiconductors and Semimetals, vol 82 (Elsevier, San Diego, 2008)Google Scholar
  59. 59.
    T. Chanier, F. Virot, R. Hayn, Phys. Rev. B 79, 205204 (2009)CrossRefADSGoogle Scholar
  60. 60.
    R. Bouzerar, G. Bouzerar, T. Ziman, Europhys. Lett. (EPL) 78, 67003 (5pp) (2007)Google Scholar
  61. 61.
    T. Dietl, Phys. Rev. B 77, 085208 (2008)CrossRefADSGoogle Scholar
  62. 62.
    W. Pacuski et al., Phys. Rev. Lett. 100, 037204 (2008)CrossRefADSGoogle Scholar
  63. 63.
    C. Śliwa, T. Dietl, Phys. Rev. B 78, 165205 (2008)CrossRefADSGoogle Scholar
  64. 64.
    R.C. Myers, M. Poggio, N.P. Stern, A.C. Gossard, D.D. Awschalom, Phys. Rev. Lett. 95, 017204 (2005)CrossRefADSGoogle Scholar
  65. 65.
    M. Julier, J. Campo, B. Gil, J.P. Lascaray, S. Nakamura, Phys. Rev. B 57, R6791 (1998)CrossRefADSGoogle Scholar
  66. 66.
    B. Gil, A. Alemu, Phys. Rev. B 56, 12446 (1997)CrossRefADSGoogle Scholar
  67. 67.
    M. Arciszewska, M. Nawrocki, J. Phys. Chem. Solids 47, 309 (1986)CrossRefADSGoogle Scholar
  68. 68.
    F. Hamdani et al., Phys. Rev. B 45, 13298 (1992)CrossRefADSGoogle Scholar
  69. 69.
    J.L. Birman, Phys. Rev. Lett. 2, 157 (1959)CrossRefADSGoogle Scholar
  70. 70.
    M. Herbich et al., Phys. Rev. B 58, 1912 (1998)CrossRefADSGoogle Scholar
  71. 71.
    Y.G. Semenov, V.G. Abramishvili, A.V. Komarov, S.M. Ryabchenko, Phys. Rev. B 56, 1868 (1997)CrossRefADSGoogle Scholar
  72. 72.
    B. Gil, O. Briot, R.-L. Aulombard, Phys. Rev. B 52, R17028 (1995)CrossRefADSGoogle Scholar
  73. 73.
    B. Gil, J. Appl. Phys. 98, 086114 (2005)CrossRefADSGoogle Scholar
  74. 74.
    T. Dietl, Phys. Rev. B 77, 085208 (2008)CrossRefADSGoogle Scholar
  75. 75.
    R.L. Aggarwal et al., Phys. Rev. B 28, 6907 (1983)CrossRefADSGoogle Scholar
  76. 76.
    M. Nawrocki, F. Hamdani, J.P. Lascaray, Z. Golacki, J. Deportes, Solid State Commun. 77, 111 (1991)CrossRefADSGoogle Scholar
  77. 77.
    A. Twardowski, K. Pakula, I. Perez, P. Wise, J.E. Crow, Phys. Rev. B 42, 7567 (1990)CrossRefADSGoogle Scholar
  78. 78.
    W.Y. Yu, A. Twardowski, L.P. Fu, A. Petrou, B.T. Jonker, Phys. Rev. B 51, 9722 (1995)CrossRefADSGoogle Scholar
  79. 79.
    J.M. Luttinger, Phys. Rev. 102, 1030 (1956)zbMATHCrossRefADSGoogle Scholar
  80. 80.
    W. Pacuski et al., Acta Phys. Pol. A 110, 303 (2006)ADSGoogle Scholar
  81. 81.
    A. Abragam, M.H.L. Pryce, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 205, 135 (1951)Google Scholar
  82. 82.
    P. Sati, C. Deparis, C. Morhain, S. Schafer, A. Stepanov, Phys. Rev. Lett. 98, 137204 (2007)CrossRefADSGoogle Scholar
  83. 83.
    N. Jedrecy, H.J.V. Bardeleben, Y. Zheng, J.L. Cantin, Phys. Rev. B 69, R041308 (2004)CrossRefADSGoogle Scholar
  84. 84.
    S. Marcet et al., Phys. Rev. B 74, 125201 (2006)CrossRefADSGoogle Scholar
  85. 85.
    R. Heitz et al., Appl. Phys. Lett. 67, 2822 (1995)CrossRefADSGoogle Scholar
  86. 86.
    E. Malguth et al., Phys. Rev. B 74, 165202 (2006)CrossRefADSGoogle Scholar
  87. 87.
    P. Sati et al., Phys. Rev. Lett. 96, 017203 (2006)CrossRefADSGoogle Scholar
  88. 88.
    T. Hoshina, J. Phys. Soc. Jpn. 21, 1608 (1966)CrossRefADSGoogle Scholar
  89. 89.
    A. Lewicki, A.I. Schindler, I. Miotkowski, B.C. Crooker, J.K. Furdyna, Phys. Rev. B 43, 5713 (1991)CrossRefADSGoogle Scholar
  90. 90.
    E. Chikoidze, H.J.V. Bardeleben, Y. Dumont, P. Galtier, J.L. Cantin, J. Appl. Phys. 97, 10D316 (2005)Google Scholar
  91. 91.
    A. Bonanni et al., Phys. Rev. B 75, 125210 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institute of Experimental PhysicsUniversity of WarsawWarsawPoland

Personalised recommendations