Skip to main content

Solving Delay Differential Equations with Homotopy Analysis Method

  • Conference paper
Life System Modeling and Intelligent Computing (ICSEE 2010, LSMS 2010)

Abstract

Delay differential equations have a wide range of application in science and engineering. They arise when the rate of change of a time-dependent process in its mathematical modeling is not only determined by its present state but also by a certain past state.In this paper, a nonlinear delay differential equation in biology was investigated. The approximation solution for the model was obtained by homotopy analysis method. Different from other analytic techniques, the homotopy analysis method provides a simple way to ensure the convergence of the solution series, so that one can always get accurate approximations. Compared with the numerical solution, the approximation solution has higher precision. It is showed that the homotopy analysis method was valid and feasible to the study of delay differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiello, W.G., Freedman, H.I.: A time delay model of single species growth with stage structure. Math. Biosci. 101, 139–156 (1990)

    Article  CAS  PubMed  Google Scholar 

  2. Buhmann, M.D., Iserles, A.: Stability of the discretized pantograph differential equation. Math. Comput. 60, 575–589 (1993)

    Article  Google Scholar 

  3. Ockendon, J.R., Tayler, A.B.: The dynamics of a current collection system for an electric locomotive. Proc. R. Soc. London Ser. A 322, 447–468 (1971)

    Article  Google Scholar 

  4. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    Article  Google Scholar 

  5. Cooke, K.L., Kaplan, J.L.: A periodicity threshold theorem for epidemic and population growth. Math. Biosci. 31, 87–104 (1976)

    Article  Google Scholar 

  6. Singh, N.: Epidemiological models for mutating pathogen with temporary immunity. PhD dissertation, University of Central Florida, Orlando, Florida (2006)

    Google Scholar 

  7. Berezansky, L., Braverman, E.: Linearized oscillation theory for a nonlinear nonautonomous delay differential equation. J. Comput. Appl. Math. 151, 119–127 (2003)

    Article  Google Scholar 

  8. Liu, M.Z., Spijker, M.: The stability of the θ methods in the numerical solution of delay differential equations. IMA J. Numer. Anal. 10, 31–48 (1990)

    Article  Google Scholar 

  9. Baker, C.T.H.: Retarded differential equations. J. Comput. Appl. Math. 125, 309–335 (2000)

    Article  Google Scholar 

  10. Zhao, J.J., Xu, Y., Liu, M.Z.: Stability analysis of numerical methods for linear neutral Volterra delay-integro-differential system. Appl. Math. Comput. 167, 1062–1079 (2005)

    Google Scholar 

  11. Rand, R.H., Armbruster, D.: Perturbation Methods, Bifurcation Theory and Computer Algebraic. Springer, Heidelberg (1987)

    Book  Google Scholar 

  12. Andersson, M., Nilsson, F.: A perturbation method used for static contact and low velocity impact. Int. J. Impact Eng. 16, 759–775 (1995)

    Article  Google Scholar 

  13. Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman and Hall/ CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  14. Liao, S.J.: An approximate solution technique which does not depend upon small parameters: a special example. Int. J. Non-linear Mech. 30(3), 371–380 (1995)

    Article  Google Scholar 

  15. Liao, S.J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147(2), 499–513 (2004)

    Google Scholar 

  16. Liao, S.J., Tan, Y.: A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119, 297–340 (2007)

    Article  Google Scholar 

  17. Abbasbandy, S.: Soliton solutions for the Fitzhugh–Nagumo equation with the homotopy analysis method. Appl. Math. Model. 32, 2706–2714 (2008)

    Article  Google Scholar 

  18. Jafari, H., Seifi, S.: Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation. Commun. Nonlinear Sci. Numer. Simulat. 14, 2006–2012 (2009)

    Article  Google Scholar 

  19. Aliakbar, V., Alizadeh-Pahlavan, A., Sadeghy, K.: The influence of thermal radiation on MHD flow of Maxwellian fluids above stretching sheets. Commun. Nonlinear Sci. Numer. Simulat. 14, 779–794 (2009)

    Article  Google Scholar 

  20. Odibat, Z., Momani, S., Xu, H.: A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations. Appl. Math. Model. 34, 593–600 (2010)

    Article  Google Scholar 

  21. Wu, Z.K.: Solution of the ENSO delayed oscillator with homotopy analysis method. J. Hydrodynamics. 21, 131–135 (2009)

    Article  CAS  Google Scholar 

  22. Khan, H., Liao, S.J., Mohapatra, R.N., Vajravelu, K.: An analytical solution for a nonlinear time-delay model in biology. Commun. Nonlinear Sci. Numer. Simulat. 14, 3141–3148 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Q., Fu, F. (2010). Solving Delay Differential Equations with Homotopy Analysis Method . In: Li, K., Li, X., Ma, S., Irwin, G.W. (eds) Life System Modeling and Intelligent Computing. ICSEE LSMS 2010 2010. Communications in Computer and Information Science, vol 97. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15853-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15853-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15852-0

  • Online ISBN: 978-3-642-15853-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics