Skip to main content

Drift Analysis with Tail Bounds

  • Conference paper
Parallel Problem Solving from Nature, PPSN XI (PPSN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6238))

Included in the following conference series:

Abstract

We give a simple and short alternative proof of the multiplicative drift theorem published recently (Doerr, Johannsen, Winzen (GECCO 2010)). It completely avoids the use of drift theorems previously used in the theory of evolutionary computation. By this, its proof is fully self-contained.

The new theorem yields exactly the same bounds for expected run-times as the previous theorem. In addition, it also gives good bounds on the deviations from the mean. This shows, for the first time, that the classical O(n logn) run-time bound for the (1+1) evolutionary algorithm for optimizing linear functions holds with high probability (and not just in expectation). Similar improvements are obtained for other classical problems in the evolutionary algorithms literature, for example computing minimum spanning trees, finding single-source shortest paths, and finding Eulerian cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baswana, S., Biswas, S., Doerr, B., Friedrich, T., Kurur, P.P., Neumann, F.: Computing single source shortest paths using single-objective fitness. In: Proceedings of FOGA 2009, pp. 59–66. ACM, New York (2009)

    Chapter  Google Scholar 

  2. Doerr, B., Hebbinghaus, N., Neumann, F.: Speeding up evolutionary algorithms through restricted mutation operators. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 978–987. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. In: Proceedings of PPSN XI. Springer, Heidelberg (to appear, 2010)

    Google Scholar 

  4. Doerr, B., Happ, E., Klein, C.: A tight bound for the (1+1)-EA on the single-source shortest path problem. In: Proceedings of CEC 2007, pp. 1890–1895. IEEE, Los Alamitos (2007)

    Google Scholar 

  5. Doerr, B., Johannsen, D.: Adjacency list matchings — an ideal genotype for cycle covers. In: Proceedings of GECCO 2007, pp. 1203–1210. ACM, New York (2007)

    Chapter  Google Scholar 

  6. Doerr, B., Johannsen, D.: Edge-based representation beats vertex-based representation in shortest path problems. In: Proceedings of GECCO 2010. ACM, New York (to appear, 2010)

    Google Scholar 

  7. Doerr, B., Johannsen, D., Winzen, C.: Drift analysis and linear functions revisited. In: Proceedings of CEC 2010. IEEE, Los Alamitos (to appear, 2010)

    Google Scholar 

  8. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. In: Proceedings of GECCO 2010. ACM, New York (to appear, 2010)

    Google Scholar 

  9. Doerr, B., Klein, C., Storch, T.: Faster evolutionary algorithms by superior graph representation. In: Proceedings of FOCI 2007, pp. 245–250. IEEE, Los Alamitos (2007)

    Google Scholar 

  10. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science 276, 51–81 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dyer, M., Greenhill, C.: Random walks on combinatorial objects. In: Surveys in Combinatorics 1999, pp. 101–136. University Press (1999)

    Google Scholar 

  12. Euler, L.: Solutio problematis ad geometriam situs pertinentis. Commentarii academiae scientiarum Petropolitanae 8, 128–140 (1741)

    Google Scholar 

  13. Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching problem. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 415–426. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multi-objective optimization. In: Proceedings of GECCO 2006, pp. 651–658. ACM, New York (2006)

    Chapter  Google Scholar 

  15. Grimmett, G.R., Stirzaker, D.R.: Probability and random processes, 2nd edn. The Clarendon Press Oxford University Press, New York (1992)

    Google Scholar 

  16. Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with applications. Advances in Applied Probability 13, 502–525 (1982)

    Article  Google Scholar 

  17. Happ, E., Johannsen, D., Klein, C., Neumann, F.: Rigorous analyses of fitness-proportional selection for optimizing linear functions. In: Proceedings of GECCO 2008, pp. 953–960. ACM, New York (2008)

    Chapter  Google Scholar 

  18. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artificial Intelligence 127, 57–85 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. He, J., Yao, X.: A study of drift analysis for estimating computation time of evolutionary algorithms. Natural Computing 3, 21–35 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hierholzer, C.: Über die Möglichkeit, einen Linenzug ohne Wiederholung und ohne Unterbrechung zu umfahren. Mathematische Annalen 6, 30–32 (1873)

    Article  MathSciNet  MATH  Google Scholar 

  21. Neumann, F.: Expected runtimes of evolutionary algorithms for the Eulerian cycle problem. In: Proceedings of CEC 2004, pp. 904–910. IEEE, Los Alamitos (2004)

    Google Scholar 

  22. Neumann, F., Oliveto, P.S., Witt, C.: Theoretical analysis of fitness-proportional selection: landscapes and efficiency. In: Proceedings of GECCO 2009, pp. 835–842. ACM, New York (2009)

    Chapter  Google Scholar 

  23. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theoretical Compututer Science 378, 32–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evolutionary computation. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 82–91. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. Reichel, J., Skutella, M.: Evolutionary algorithms and matroid optimization problems. In: Proceedings of GECCO 2007, pp. 947–954. ACM, New York (2007)

    Chapter  Google Scholar 

  26. Scharnow, J., Tinnefeld, K., Wegener, I.: The analysis of evolutionary algorithms on sorting and shortest paths problems. Journal of Mathematical Modelling and Algorithms 4, 349–366 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doerr, B., Goldberg, L.A. (2010). Drift Analysis with Tail Bounds. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15844-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15844-5_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15843-8

  • Online ISBN: 978-3-642-15844-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics