Skip to main content

Generic Conduction Parameters for Predicting Activation Waves in Customised Cardiac Electrophysiology Models

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6364))

Abstract

Model customisation to represent specific experimental or clinical cases is becoming increasingly important as simulations aim to characterise individual variability under physiological and pathological conditions. This study presents a new methodology to customise and regularise heart shape and fibres using imaging data (MRI and DT-MRI). The effect of using generic conductivity tensor values in electrophysiology simulations on these customised meshes is investigated. Simulation results demonstrate the ability of generic parameters to approximate epicardial activation patterns in healthy porcine hearts. Results also show a limited sensitivity of electrical activation times to the anisotropy of these parameters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roth, B.J.: Electrical conductivity values used with the bidomain model of cardiac tissue. IEEE Transactions on Biomedical Engineering 44, 326–328 (1997)

    Article  Google Scholar 

  2. Pop, M., Sermesant, M., Lepiller, D., Truong, M.V., McVeigh, E.R., Crystal, E., Dick, A., Delingette, H., Ayache, N., Wright, G.A.: Fusion of optical imaging and MRI for the evaluation and adjustment of macroscopic models of cardiac electrophysiology: A feasibility study. Medical Image Analysis 13, 370–380 (2009)

    Article  Google Scholar 

  3. Nielsen, P.M., Le Grice, I.J., Smaill, B.H., Hunter, P.J.: Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. Heart Circ. Physiol. 260, H1365–H1378 (1991)

    Google Scholar 

  4. Stevens, C., Remme, E., LeGrice, I., Hunter, P.: Ventricular mechanics in diastole: material parameter sensitivity. Journal of Biomechanics 36, 737–748 (2003)

    Article  Google Scholar 

  5. Vetter, F.J., McCulloch, A.D.: Three-dimensional analysis of regional cardiac function: a model of rabbit ventricular anatomy. Progress in Biophysics and Molecular Biology 69, 157–183 (1998)

    Article  Google Scholar 

  6. Lamata, P., Niederer, S., Barber, D., Nordsletten, D., Lee, J., Hose, R., Smith, N.: Personalization of cubic hermite meshes for efficient biomechanical simulations. In: Proc. MICCAI (2010)

    Google Scholar 

  7. Fernandez, J.W., Mithraratne, P., Thrupp, S.F., Tawhai, M.H., Hunter, P.J.: Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech. Model Mechanobiol. 2, 139–155 (2004)

    Article  Google Scholar 

  8. Barber, D.C., Oubel, E., Frangi, A.F., Hose, D.R.: Efficient computational fluid dynamics mesh generation by image registration. Med. Image Anal. 11, 648–662 (2007)

    Article  Google Scholar 

  9. Wang, V.Y., Lam, H.I., Ennis, D.B., Cowan, B.R., Young, A.A., Nash, M.P.: Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function. Medical Image Analysis 13, 773–784 (2009)

    Article  Google Scholar 

  10. Vigmond, E.J., Hughes, M., Plank, G., Leon, L.J.: Computational tools for modeling electrical activity in cardiac tissue. Journal of Electrocardiology 36, 69–74 (2003)

    Article  Google Scholar 

  11. ten Tusscher, K.H.W.J., Panfilov, A.V.: Alternans and spiral breakup in a human ventricular tissue model. Am. J. Physiol. Heart Circ. Physiol. 291, H1088–H1100 (2006)

    Article  Google Scholar 

  12. Caldwell, B.J., Trew, M.L., Sands, G.B., Hooks, D.A., LeGrice, I.J., Smaill, B.H.: Three Distinct Directions of Intramural Activation Reveal Nonuniform Side-to-Side Electrical Coupling of Ventricular Myocytes. Circ. Arrhythm Electrophysiol. 2, 433–440 (2009)

    Article  Google Scholar 

  13. Pereon, Y., Demolombe, S., Baro, I., Drouin, E., Charpentier, F., Escande, D.: Differential expression of KvLQT1 isoforms across the human ventricular wall. Am J. Physiol. Heart Circ. Physiol. 278, H1908–H1915 (2000)

    Google Scholar 

  14. Keener, J., Sneyd, J.: Mathematical Physiology (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lamata, P., Niederer, S., Plank, G., Smith, N. (2010). Generic Conduction Parameters for Predicting Activation Waves in Customised Cardiac Electrophysiology Models. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. STACOM 2010. Lecture Notes in Computer Science, vol 6364. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15835-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15835-3_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15834-6

  • Online ISBN: 978-3-642-15835-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics