Skip to main content

Learning Invariant Visual Shape Representations from Physics

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6354))

Abstract

3D shape determines an object’s physical properties to a large degree. In this article, we introduce an autonomous learning system for categorizing 3D shape of simulated objects from single views. The system extends an unsupervised bottom-up learning architecture based on the slowness principle with top-down information derived from the physical behavior of objects. The unsupervised bottom-up learning leads to pose invariant representations. Shape specificity is then integrated as top-down information from the movement trajectories of the objects. As a result, the system can categorize 3D object shape from a single static object view without supervised postprocessing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Einhäuser, W., Hipp, J., Eggert, J., Körner, E., König, P.: Learning viewpoint invariant object representations using a temporal coherence principle. Biol. Cyber. 93, 79–90 (2005)

    Article  MATH  Google Scholar 

  2. Franzius, M., Sprekeler, H., Wiskott, L.: Slowness and sparseness lead to place, head-diretion and spatial-view cells. PLoS Comp. Biol. 3(8), e166 (2007)

    Article  MathSciNet  Google Scholar 

  3. Franzius, M., Wilbert, N., Wiskott, L.: Invariant object recognition with slow feature analysis. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008, Part I. LNCS, vol. 5163, pp. 961–970. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Gupta, A., van der Meer, M., Touretzky, D., Redish, A.: Hippocampal replay is not a simple function of experience. Neuron 65(5), 695–705 (2010)

    Article  Google Scholar 

  5. Metta, G., Fitzpatrick, P.: Better vision through manipulation. In: Proc. 2nd Inter. Workshop on Epigenetic Robotics, vol. 11, pp. 109–128 (2002)

    Google Scholar 

  6. Ridge, B., Skočaj, D., Leonardis, A.: A system for learning basic object affordances using a self-organizing map. In: Proc. ICCS (2008)

    Google Scholar 

  7. Rolls, E.T., Stringer, S.M.: Invariant visual object recognition: A model, with lighting invariance. Journal of Physiology - Paris 100, 43–62 (2006)

    Article  Google Scholar 

  8. Stark, M., Lies, P., Zillich, M., Wyatt, J., Schiele, B.: Functional object class detection based on learned affordance cues. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 435–444. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Wiskott, L., Sejnowski, T.: Slow feature analysis: Unsupervised learning of invariances. Neural Comp. 14(4), 715–770 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Franzius, M., Wersing, H. (2010). Learning Invariant Visual Shape Representations from Physics. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6354. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15825-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15825-4_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15824-7

  • Online ISBN: 978-3-642-15825-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics