Skip to main content

Multifactor Expectation Maximization for Factor Graphs

  • Conference paper
Artificial Neural Networks – ICANN 2010 (ICANN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6354))

Included in the following conference series:

  • 3311 Accesses

Abstract

Factor graphs allow large probability distributions to be stored efficiently and facilitate fast computation of marginal probabilities, but the difficulty of training them has limited their use. Given a large set of data points, the training process should yield factors for which the observed data has a high likelihood. We present a factor graph learning algorithm which on each iteration merges adjacent factors, performs expectation maximization on the resulting modified factor graph, and then splits the joined factors using non-negative matrix factorization. We show that this multifactor expectation maximization algorithm converges to the global maximum of the likelihood for difficult learning problems much faster and more reliably than traditional expectation maximization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kschischang, F., Frey, B., Loeliger, H.: Factor graphs and the sum-product algorithm. IEEE Trans. on Information Theory 47(2), 498–519 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc B Met. 39(1), 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  3. Lauritzen, S.: The EM algorithm for graphical association models with missing data. Computational Statistics and Data Analysis 19 (1995)

    Google Scholar 

  4. Lee, D., Seung, H.: Algorithms for non-negative matrix factorization. Advances in Neural Information Processing Systems 13, 556–562 (2001)

    Google Scholar 

  5. Shwe, M., Middleton, B., Heckerman, D., Henrion, M., Horvitz, E., Lehmann, H., Cooper, G.: Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base. I. The probabilistic model and inference algorithms. Methods Inf. Med. 30(4), 241–255 (1991)

    Google Scholar 

  6. Frey, B., Jojic, N.: A comparison of algorithms for inference and learning in probabilitic graphical models. IEEE Trans. on Pattern Analysis and Machine Intelligence 27(9), 1392–1416 (2005)

    Article  Google Scholar 

  7. Murphy, K.: Dynamic Bayesian networks: Representation, inference, and learning. PhD thesis, University of California, Berkeley (2002)

    Google Scholar 

  8. Darroch, J., Ratcliff, D.: Generalized iterative scaling for log-linear models. The Annals of Mathematical Statistics 43(5), 1470–1480 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lee, D., Seung, H.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  10. Berry, M., Browne, M., Langville, A., Pauca, V., Plemmons, R.: Algorithms and Applications for Approximate Nonnegative Matrix Factorization. Submitted to Computational Statistics and Data Analysis (2006)

    Google Scholar 

  11. Rolfe, J.: The cortex as a graphical model. Master’s thesis, California Institute of Technology (2006)

    Google Scholar 

  12. Wainwright, M., Jaakkola, T., Willsky, A.: Tree-based reparameterization framework for analysis of sum-product and related algorithms. IEEE Trans. on Information Theory 49(5), 1120–1146 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Brunet, J.P., Tamayo, P., Golub, T., Mesirov, J.: Metagenes and molecular pattern discovery using matrix factorization. Proceedings of the National Academy of Sciences (USA) 101(12), 4164–4169 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rolfe, J.T., Cook, M. (2010). Multifactor Expectation Maximization for Factor Graphs. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6354. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15825-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15825-4_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15824-7

  • Online ISBN: 978-3-642-15825-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics