Skip to main content

An Incremental Probabilistic Neural Network for Regression and Reinforcement Learning Tasks

  • Conference paper
Artificial Neural Networks – ICANN 2010 (ICANN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6353))

Included in the following conference series:

Abstract

This paper presents a new probabilistic neural network model, called IPNN (for Incremental Probabilistic Neural Network), which is able to learn continuously probability distributions from data flows. The proposed model is inspired by the Specht’s general regression neural network, but have several improvements which makes it more suitable to be used on-line in and robotic tasks. Moreover, IPNN is able to automatically define the network structure in an incremental way, with new units added whenever necessary to represent new training data. The performed experiments shows that IPNN is very useful in regression and reinforcement learning tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Specht, D.: Probabilistic neural networks for classification, mapping, or associative memory. In: Proc. IEEE Int. Conf. Neural Networks, San Diego, CA, vol. 1, pp. 525–532 (July 1988)

    Google Scholar 

  2. Specht, D.F.: Probabilistic neural networks. Neural Networks 3, 109–118 (1990)

    Article  Google Scholar 

  3. Rutkowski, L.: Adaptive probabilistic neural networks for pattern classification in time-varying environment. IEEE Trans. Neural Networks 15(4), 811–827 (2004)

    Article  MathSciNet  Google Scholar 

  4. Tråvén, H.G.H.: A neural network approach to statistical pattern classification by “semiparametric” estimation of probability density functions. IEEE Trans. Neural Networks 2(3), 366–377 (1991)

    Article  Google Scholar 

  5. Specht, D.F.: A general regression neural network. IEEE Trans. Neural Networks 2(6), 568–576 (1991)

    Article  Google Scholar 

  6. Montana, D.: A weighted probabilistic neural network. In: Advances in Neural Information Processing Systems, vol. 4, pp. 1110–1117. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

  7. Ćwik, J., Koronacki, J.: Probability density estimation using a gaussian clustering algorithm. Neural Computing and Applications 4, 149–160 (1996)

    Article  Google Scholar 

  8. Berthold, M.R., Diamond, J.: Constructive training of probabilistic neural networks. Neurocomputing 19, 167–183 (1998)

    Article  Google Scholar 

  9. Delgosha, F., Menhaj, M.B.: Fuzzy probabilistic neural networks: A practical approach to the implementation of bayesian classifier. In: Reusch, B. (ed.) Fuzzy Days 2001. LNCS, vol. 2206, pp. 76–85. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Chang, R.K.Y., Loo, C.K., Rao, M.V.C.: Enhanced probabilistic neural network with data imputation capabilities for machine-fault classification. Neural Computing and Applications 18, 791–800 (2009)

    Article  Google Scholar 

  11. Polat, O., Yildirim, T.: FPGA implementation of a general regression neural network: An embedded pattern classification system. Digital Signal Processing 20, 881–886 (2010)

    Article  Google Scholar 

  12. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society 39(1), 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  13. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley, Boston (2006)

    Google Scholar 

  14. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. In: Intelligent Robotics and Autonomous Agents. MIT Press, Cambridge (2006)

    Google Scholar 

  15. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Prentice-Hall, Upper Saddle River (2008)

    Google Scholar 

  16. Engel, P.M., Heinen, M.R.: Incremental learning of multivariate gaussian mixture models. In: Proc. 20th Brazilian Symposium on AI (SBIA), São Bernardo do Campo, SP, Brazil. LNCS. Springer, Heidelberg (October 2010) (to appear)

    Google Scholar 

  17. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  18. Utsunomiya, H., Shibata, K.: Learning with a recurrent neural network in a continuous state and action space task. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008, Part II. LNCS, vol. 5507, pp. 970–978. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Doya, K.: Reinforcement learning in continuous time and space. Neural Computation 12(1), 219–245 (2000)

    Article  Google Scholar 

  20. Basso, E.W., Engel, P.M.: Reinforcement learning in non-stationary continuous time and space scenarios. In: Anais do VII Brazilian Meeting on Artificial Intelligence ENIA, Bento Gonçalves, RS, Brazil. SBC Press (2009)

    Google Scholar 

  21. Smart, W.D.: Making Reinforcement Learning Work on Real Robots. Ph.d. thesis, Brown Univ., Providence, Rhode Island (May 2002)

    Google Scholar 

  22. Doya, K.: Temporal difference learning in continuous time and space. In: Advances in Neural Information Processing Systems, vol. 8, pp. 1073–1079 (1996)

    Google Scholar 

  23. Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Networks 1, 4–27 (1990)

    Article  Google Scholar 

  24. Nolfi, S., Tani, J.: Extracting regularities in space and time through a cascade of prediction networks: The case of a mobile robot navigating in a structured environment. Connection Science 11(2), 125–148 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heinen, M.R., Engel, P.M. (2010). An Incremental Probabilistic Neural Network for Regression and Reinforcement Learning Tasks. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15822-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15822-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15821-6

  • Online ISBN: 978-3-642-15822-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics