Skip to main content

Hidden Markov Model for Human Decision Process in a Partially Observable Environment

  • Conference paper
Artificial Neural Networks – ICANN 2010 (ICANN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6353))

Included in the following conference series:

Abstract

The environment surrounding us is inevitably uncertain; we cannot perceive all the information necessary for making optimal decision. Even in such a partially observable environment, humans can make appropriate decision by resolving the uncertainty. During decision making in an uncertain environment, resolving behaviors of the uncertainty and optimal behaviors to best suit for the environment are often incompatible, which is termed exploration-exploitation dilemma in the field of machine learning. To examine how we cope with the exploration-exploitation dilemma, in this study, we performed statistical modeling of human behaviors when performing a partially observable maze navigation task; in particular, we devised a hidden Markov model (HMM), which incorporates inference of a hidden variable in the environment and switching between exploration and exploitation. Our HMM-based model well reproduced the human behaviors, suggesting the human subjects actually performed exploration and exploitation to effectively adapt to this uncertain environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paulus, M.P., Hozack, N., Zauscher, B., McDowell, J.E., Frank, L., Brown, G.G., Braff, D.L.: Prefrontal, parietal, and temporal cortex networks underlie decision-making in the presence of uncertainty. NeuroImage 13, 91–100 (2001)

    Article  Google Scholar 

  2. Dayan, P., Daw, N.D.: Decision theory, reinforcement learning, and the brain. Cognitive, Affective, and Behavioral Neuroscience 8, 429–453 (2008)

    Article  Google Scholar 

  3. Daw, N.D., Doya, K.: The computational neurobiology of learning and reward. Current Opinion in Neurobiology 16, 199–204 (2006); Cognitive neuroscience

    Article  Google Scholar 

  4. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artificial Intelligence 101, 99–134 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Sutton, R.S., Barto, A.G.: Reinforcement Learning. MIT Press, Cambridge (1998)

    Google Scholar 

  6. Yoshida, W., Ishii, S.: Resolution of uncertainty in prefrontal cortex. Neuron 50, 781–789 (2006)

    Article  Google Scholar 

  7. Daw, N.D., O’Doherty, J.P., Dayan, P., Seymour, B., Dolan, R.J.: Cortical substrates for exploratory decisions in humans. Nature 441, 876–879 (2006)

    Article  Google Scholar 

  8. Kitagawa, G., Sato, S.: Monte carlo smoothing and self-organising state space model. In: Doucet, A., Freitas, N.D., Gordon, N. (eds.) Sequential Monte Carlo Methods in Practice, pp. 177–195. Springer, Heidelberg (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adomi, M., Shikauchi, Y., Ishii, S. (2010). Hidden Markov Model for Human Decision Process in a Partially Observable Environment. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15822-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15822-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15821-6

  • Online ISBN: 978-3-642-15822-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics