Skip to main content

Quantitative Phase Microscopy of Biological Cell Dynamics by Wide-Field Digital Interferometry

  • Chapter
  • First Online:

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 46))

Abstract

Interferometric phase measurements of wide-field images of biological cells provide a quantitative tool for cell biology, as well as for medical diagnosis and monitoring. Visualizing rapid dynamic cell phenomena by interferometric phase microscopy can be performed at very fast rates of up to several thousands of full frames per second, while retaining high resolution and contrast to enable measurements of fine cellular features. With this approach, no special sample preparation, staining, or fluorescent labeling is required, and the resulting phase profiles yield the optical path delay profile of the cell with sub-nanometer accuracy. In spite of these unique advantages, interferometric phase microscopy has not been widely applied for recording the dynamic behavior of live cells compared to other traditional phase microscopy methods such as phase contrast and differential interference contrast (DIC) microscopy, which are label free but inherently qualitative. Recent developments in the field of interferometric phase microscopy are likely to result in a change in this situation in the near future. Through careful consideration of the capabilities and limitations of interferometric phase microscopy, important new contributions in the fields of cell biology and biomedicine will be realized. This chapter presents the current state of the art of interferometric phase microscopy of biological cell dynamics, the open questions in this area, and specific solutions developed in our laboratory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Pluta, Advanced Light Microscopy, vol. 2. (Elsevier, Amsterdam, 1988)

    Google Scholar 

  2. F. Dubois, C. Yourassowsky, O. Monnom et al., Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration. J. Biomed. Opt. 11, 054032 (2006)

    Article  ADS  Google Scholar 

  3. G. Popescu, inQuantitative Phase Imaging of Nanoscale Cell Structure and Dynamics, ed. by B. Jena. Methods in Cell Biology. (Elsevier, Amsterdam, 2008)

    Google Scholar 

  4. N. Lue, W. Choi, G. Popescu, K. Badizadegan, R.R. Dasari, M.S. Feld, Synthetic aperture tomographic phase microscopy for 3D imaging of live cells in translational motion. Opt. Express 20, 16240 (2008)

    Article  ADS  Google Scholar 

  5. G. Popescu, Y.K. Park, N. Lue, C.A. Best-Popescu, L. Deflores, R.R. Dasari, M.S. Feld, K. Badizadegan, Optical imaging of cell mass and growth dynamics. Am. J. Physiol.-Cell Physiol. 295, C538 (2008)

    Article  Google Scholar 

  6. G. Di Caprio, G. Coppola, S. Grilli et al., Microfluidic system based on the digital holography microscope for analysis of motile sperm. Proc. SPIE 7389, 738907 (2009)

    Article  Google Scholar 

  7. N.T. Shaked, M.T. Rinehart, A. Wax, Dual-interference-channel quantitative-phase microscopy of live cell dynamics. Opt. Lett. 34, 767–769 (2009)

    Article  ADS  Google Scholar 

  8. N.T. Shaked, J.D. Finan, F. Guilak, A. Wax, Quantitative phase microscopy of articular chondrocyte dynamics by wide-field digital interferometry. J. Biomed. Opt. Lett. 15, 010505 (2010)

    Article  ADS  Google Scholar 

  9. E. Cuche, P. Marquet, C. Depeursinge, Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl. Opt. 38, 6994–7001 (1999)

    Article  ADS  Google Scholar 

  10. E. Cuche, P. Marquet, C. Depeursinge, Spatial filtering for zero-order and twin-image elimination in digital off-axis interferometry. Appl. Opt. 39, 4070–4075 (2000)

    Article  ADS  Google Scholar 

  11. Y. Zhang, Q. Lu, B. Ge, Elimination of zero-order diffraction in digital off-axis interferometry. Opt. Commun. 240, 261–267 (2004)

    Article  ADS  Google Scholar 

  12. T.M. Kreis, W.P.P. Jupiter, Suppression of the dc term in digital interferometry. Opt. Eng. 36, 2357–2360 (1997)

    Article  ADS  Google Scholar 

  13. Y. Takaki, H. Kawai, H. Ohzu, Hybrid-interferometric microscopy free of conjugate and zero-order images. Appl. Opt. 38, 4990–4996 (1999)

    Article  ADS  Google Scholar 

  14. P. Marquet, B. Rappaz, P.J. Magistretti, E. Cuche, Y. Emery, T. Colomb, C. Depeursinge, Digital holographic microscopy: A noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 30, 468–470 (2005)

    Article  ADS  Google Scholar 

  15. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, P. Magistretti, Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. Opt. Express 13, 9361–9373 (2005)

    Article  ADS  Google Scholar 

  16. T. Ikeda, G. Popescu, R.R. Dasari, M.S. Feld, Hilbert phase microscopy for investigating fast dynamics in transparent systems. Opt. Lett. 30, 1165 (2005)

    Article  ADS  Google Scholar 

  17. G. Popescu, T. Ikeda, R.R. Dasari, M.S. Feld, Diffraction phase microscopy for quantifying cell structure and dynamics. Opt. Lett. 31, 775 (2006)

    Article  ADS  Google Scholar 

  18. I. Yamaguchi, T. Zhang, Phase-shifting digital interferometry. Opt. Lett. 22, 1268–1270 (1997)

    Article  ADS  Google Scholar 

  19. P. Guo, A.J. Devaney, Digital microscopy using phase-shifting digital holography with two reference waves. Opt. Lett. 29, 857–859 (2004)

    Article  ADS  Google Scholar 

  20. T. Kiire, S. Nakadate, M. Shibuya, Simultaneous formation of four fringes by using a polarization quadrature phase-shifting interferometer with wave plates and a diffraction grating. Appl. Opt. 47, 4787–4792 (2008)

    Article  ADS  Google Scholar 

  21. G. Rodriguez-Zurita, N. Toto-Arellano, C. Meneses-Fabian, J.F. Vázquez-Castillo, One-shot phase-shifting interferometry: Five, seven, and nine interferograms. Opt. Lett. 33, 2788–2790 (2008)

    Article  ADS  Google Scholar 

  22. X.F. Meng, L.Z. Cai, X.F. Xu, X.L. Yang, X.X. Shen, G.Y. Dong, Y.R. Wang, Two-step phase-shifting interferometry and its application in image encryption. Opt. Lett. 31, 1414–1416 (2006)

    Article  ADS  Google Scholar 

  23. J.P. Liu, T.C. Poon, Two-step-only quadrature phase-shifting digital interferometry. Opt. Lett. 34, 250–252 (2009)

    Article  ADS  Google Scholar 

  24. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, O. Matoba, Parallel two-step phase-shifting digital holography. Appl. Opt. 47, D183–D189 (2008)

    Article  ADS  Google Scholar 

  25. G. Popescu, L.P. Deflores, K. Badizadegan et al., Fourier phase microscopy for investigation of biological structure and dynamics. Opt. Lett. 29, 2503 (2004)

    Article  ADS  Google Scholar 

  26. N. Lue, W. Choi, G. Popescu, T. Ikeda, R.R. Dasari, K. Badizadegan, M.S. Feld, Quantitative phase imaging of live cells using fast Fourier phase microscopy. Appl. Opt. 32, 811 (2007)

    Google Scholar 

  27. C.P. Brophy, Effect of intensity error correlation on the computed phase of phase-shifting interferometry. J. Opt. Soc. Am. A 7, 537–541 (1990)

    Article  ADS  Google Scholar 

  28. N.T. Shaked, Y. Zhu, M.T. Rinehart, A. Wax, Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells. Opt. Express 17, 15585–15591 (2009)

    Article  ADS  Google Scholar 

  29. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, G. Pierattini, Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging. App. Opt. 42, 1938–1946 (2003)

    Article  ADS  Google Scholar 

  30. E. Tajahuerce, O. Matoba, S.C. Verrall, B. Javidi, Optoelectronic information encryption with phase-shifting interferometry. Appl. Opt. 39, 2313–2320 (2000)

    Article  ADS  Google Scholar 

  31. K.J. Chalut, W.J. Brown, A. Wax, Quantitative phase microscopy with asynchronous digital interferometry. Opt. Express 15, 3047–3052 (2007)

    Article  ADS  Google Scholar 

  32. N.T. Shaked, T. Newpher, M.D. Ehlers, A. Wax, Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics. Appl. Opt. 49, 2872–2878 (2010)

    Article  ADS  Google Scholar 

  33. F. Charrière, T. Colomb, F. Montfort, E. Cuche, P. Marquet, C. Depeursinge, Shot-noise influence on the reconstructed phase image signal-to-noise ratio in digital holographic microscopy. Appl Opt. 45, 7667–7673 (2006)

    Article  ADS  Google Scholar 

  34. F. Charrière, B. Rappaz, J. Kühn, T. Colomb, P. Marquet, C. Depeursinge, Influence of shot noise on phase measurement accuracy in digital holographic microscopy. Opt. Express 15, 8818–8831 (2007)

    Article  ADS  Google Scholar 

  35. P.J. de Groot, Vibration in phase-shifting interferometry. J Opt. Soc. Am. A 12, 2212 (1995)

    Article  ADS  Google Scholar 

  36. H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R.R. Dasari, M.S. Feld, Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry. Opt. Lett. 29, 2399–2401 (2004)

    Article  ADS  Google Scholar 

  37. C. Remmersmann, S. Stürwald, B. Kemper, P. Langehanenberg, G. von Bally, Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging. Appl Opt. 48, 1463–1472 (2009)

    Article  ADS  Google Scholar 

  38. F. Dubois, L. Joannes, J.C. Legros, Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence. Appl. Opt. 38, 7085–7094 (1999)

    Article  ADS  Google Scholar 

  39. F. Dubois, M.N. Requena, C. Minetti, O. Monnom, E. Istasse, Partial spatial coherence effects in digital holographic microscopy with a laser source. Appl. Opt. 43, 1131–1139 (2004)

    Article  ADS  Google Scholar 

  40. M.A. Schofield, Y. Zhu, Fast phase unwrapping algorithm for interferometric applications. Opt. Lett. 28, 1194–1196 (2003)

    Article  ADS  Google Scholar 

  41. J. Huntley, Noise-immune phase unwrapping algorithm. Appl. Opt. 28, 3268–3270 (1989)

    Article  ADS  Google Scholar 

  42. T.J. Flynn, Two-dimensional phase unwrapping with minimum weighted discontinuity. J. Opt. Soc. Am. A 14, 2692 (1997)

    Article  ADS  Google Scholar 

  43. J. M. Huntley, H. Saldner, Temporal phase-unwrapping algorithm for automated interferogram analysis. Appl. Opt. 32, 3047–3052 (1993)

    Article  ADS  Google Scholar 

  44. D.C. Ghiglia, M.D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, NY, 1998)

    MATH  Google Scholar 

  45. Y.Y. Cheng, J.C. Wyant, Two-wavelength phase shifting interferometry. Appl. Opt. 23, 4539 (1984)

    Article  ADS  Google Scholar 

  46. R. Onodera, Y. Ishii, Two-wavelength interferometry that uses a Fourier-transform method. Appl. Opt. 37, 7988–7994 (1998)

    Article  ADS  Google Scholar 

  47. M.T. Rinehart, N.T. Shaked, N.J. Jenness, R.L. Clark, A. Wax, Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera. Opt. Lett. 35, 2612–2614 (2010)

    Article  ADS  Google Scholar 

  48. C.J. Mann, P.R. Bingham, V.C. Paquit, K.W. Tobin, Quantitative phase imaging by three-wavelength digital holography. Opt. Express 16, 9753–9764 (2008)

    Article  ADS  Google Scholar 

  49. J. Gass, A. Dakoff, M.K. Kim, Phase imaging without 2π ambiguity by multiwavelength digital holography. Opt. Lett. 28, 1141–1143 (2003)

    Article  ADS  Google Scholar 

  50. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, C. Depeursinge, Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition. Opt. Express 15, 7231–7242 (2007)

    Article  ADS  Google Scholar 

  51. A. Khmaladze, M. Kim, C. Lo, Phase imaging of cells by simultaneous dual-wavelength reflection digital holography. Opt. Express 16, 10900–10911 (2008)

    Article  ADS  Google Scholar 

  52. Y. Fu, G. Pedrini, B.M. Hennelly, R.M. Groves, W. Osten, Dual-wavelength image-plane digital holography for dynamic measurement. Opt. Lasers Eng. 47, 552–557 (2009)

    Article  Google Scholar 

  53. C.K. Hitzenberger, M. Sticker, R. Leitgeb, A.F. Fercher, Differential phase measurements in low-coherence interferometry without 2pi ambiguity. Opt. Lett. 26, 1864–1866 (2001)

    Article  ADS  Google Scholar 

  54. J. Zhang, B. Rao, L. Yu, Z. Chen, High-dynamic-range quantitative phase imaging with spectral domain phase microscopy. Opt. Lett. 34, 3442–3444 (2009)

    Article  ADS  Google Scholar 

  55. A. Wax, C. Yang, M. Müller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner,R. R. Dasari, M.S. Feld, In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry. Cancer Res. 63, 3556–3559 (2003)

    Google Scholar 

  56. M.S. Amin, Y.K. Park, N. Lue, R.R. Dasari, K. Badizadegan, M.S. Feld, G. Popescu, Microrheology of red blood cell membranes using dynamic scattering microscopy. Opt. Express 15, 17001 (2007)

    Article  ADS  Google Scholar 

  57. A. Wax, K. Sokolov, Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles. Laser Photon Rev 3, 146–158 (2009)

    Article  Google Scholar 

  58. L. Cognet et al., Single metallic nanoparticle imaging for protein detection in cells. Proc. Natl. Acad. Sci. USA. (PNAS) 100, 11350–11355 (2003)

    Article  ADS  Google Scholar 

  59. D. Boyer et al., Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297, 1160–1163 (2002)

    Article  ADS  Google Scholar 

  60. M.C. Skala et al., Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanosphere. Nano Lett. 8, 3461–3467 (2008)

    Article  ADS  Google Scholar 

  61. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, C. Depeursinge, Cell refractive index tomography by digital holographic microscopy. Opt. Lett. 31, 178–180 (2006)

    Article  ADS  Google Scholar 

  62. M.S. Feld, Tomographic phase microscopy. Nat. Methods 4, 717–719 (2007)

    Article  Google Scholar 

  63. N. Lue, W. Choi, K. Badizadegan, R.R. Dasari, M.S. Feld, G. Popescu, Confocal diffraction phase microscopy of live cells. Opt. Lett. 33, 2074–2076 (2008)

    Article  ADS  Google Scholar 

  64. D.J. Brady, K. Choi, D.L. Marks, R. Horisaki, S. Lim, Compressive holography. Opt. Express 17, 13040–13049 (2009)

    Article  ADS  Google Scholar 

  65. G. Popescu, K. Badizadegan, R.R. Dasari, M.S. Feld, Observation of dynamic subdomains in red blood cells. J. Biomed. Opt. Lett. 11, 040503 (2006)

    Article  ADS  Google Scholar 

  66. G. Popescu, Y.K. Park, R.R. Dasari, K. Badizadegan, M.S. Feld, Coherence properties of red blood cell membrane motions. Phys. Rev. E. 76, 021902 (2007)

    Article  ADS  Google Scholar 

  67. G. Popescu, Y.K. Park, W. Choi, R.R. Dasari, M.S. Feld, K. Badizadegan, Imaging red blood cell dynamics by quantitative phase microscopy. Blood Cells Mol. Dis. (2008)

    Google Scholar 

  68. M. Mir, Z. Wang, K. Tangella, G. Popescu, Diffraction phase cytometry: Blood on a CD-Rom. Opt. Express 17, 2579–2585 (2009)

    Article  ADS  Google Scholar 

  69. M. Kemmler, M. Fratz, D. Giel, N. Saum, A. Brandenburg, C. Hoffmann, Noninvasive time-dependent cytometry monitoring by digital holography. J. Biomed. Opt. 12 (2007)

    Google Scholar 

  70. J.P. Urban, A.C. Hall, K.A. Gehl, Regulation of matrix synthesis rates by the ionic and osmotic environment of articular chondrocytes. J. Cell Physiol. 154, 262–270 (1993)

    Article  Google Scholar 

  71. F. Guilak, G.R. Erickson, H.P. Ting-Beall, The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes. Biophys. J. 82, 720–727 (2002)

    Article  Google Scholar 

  72. W.R. Trickey, F.P.T. Baaijens, T.A. Laursen, L.G. Alexopoulos, F. Guilak, Determination of the Poisson’s ratio of the cell: Recovery properties of chondrocytes after release from complete micropipette aspiration. J. Biomech. 39, 78–87 (2006)

    Article  Google Scholar 

  73. F. Dubois, C. Schockaert, N. Callens, C. Yourassowsky, Focus plane detection criteria in digital holography microscopy by amplitude analysis. Opt. Express 14, 5895–5908 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Natan T. Shaked or Adam Wax .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shaked, N.T., Rinehart, M.T., Wax, A. (2011). Quantitative Phase Microscopy of Biological Cell Dynamics by Wide-Field Digital Interferometry. In: Ferraro, P., Wax, A., Zalevsky, Z. (eds) Coherent Light Microscopy. Springer Series in Surface Sciences, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15813-1_7

Download citation

Publish with us

Policies and ethics