Skip to main content

Quantitative Phase Microscopy for Accurate Characterization of Microlens Arrays

  • Chapter
  • First Online:
Coherent Light Microscopy

Abstract

Microlens arrays are of fundamental importance in a wide variety of applications in optics and photonics. This chapter deals with an accurate digital holography-based characterization of both liquid and polymeric microlenses fabricated by an innovative pyro-electrowetting process. The actuation of liquid and polymeric films is obtained through the use of pyroelectric charges generated into polar dielectric lithium niobate crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Kuiper, B.H.W. Hendriks, Variable- focus liquid lens for miniature cameras. Appl. Phys. Lett. 85, 1128–1130 (2004)

    Article  ADS  Google Scholar 

  2. L. Dong, A.K. Agarwal, D.J. David, J. Beebe, H. Jiang, Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551–554 (2006)

    Article  ADS  Google Scholar 

  3. B. Berge, J. Peseux, Variable focal lens controlled by an external voltage: an application of electrowetting. Eur. Phys. J. E 3, 159–163 (2000)

    Article  Google Scholar 

  4. L.G. Commander, S.E. Day, D.R. Selviah, Variable focal length microlenses. Opt. Commun. 177, 157–170 (2000)

    Article  ADS  Google Scholar 

  5. P.H. Huang, T.C. Huang, Y.T. Sun, S.Y. Yang, Fabrication of large area resin microlens arrays using gas-assisted ultraviolet embossing. Opt. Express 16, 3041–3048 (2008)

    Article  ADS  Google Scholar 

  6. A. Pikulin N. Bityurin, G. Langer, D. Brodoceanu, D. Bauerle, Hexagonal structures on metal-coated two-dimensional microlens arrays. Appl. Phys. Lett. 91, 191106 (2007)

    Article  ADS  Google Scholar 

  7. F. Krogmann, W. Monch, H. Zappe, A MEMS-based variable micro-lens system. J. Opt. A 8, S330–S336 (2006)

    ADS  Google Scholar 

  8. C.C. Cheng, C.A. Chang, J.A. Yeh, Variable focus dielectric liquid droplet lens. Opt. Express 14, 4101–4106 (2006)

    Article  ADS  Google Scholar 

  9. C.C. Cheng, J.A. Yeh, Dielectrically actuated liquid lens. Opt. Express 15, 7140–7145 (2007)

    Article  ADS  Google Scholar 

  10. N. Chronis, G.L. Liu, K.H. Jeong, L.P. Lee, Tunable liquid-filled microlens array integrated with microfluidic network. Opt. Express 11, 2370–2378 (2003)

    Article  ADS  Google Scholar 

  11. D.Y. Zhang, N. Justis, Y.H. Lo, Integrated fluidic adaptive zoom lens. Opt. Lett. 29, 2855–2857 (2004)

    Article  ADS  Google Scholar 

  12. P.M. Moran, S. Dharmatilleke, A.H. Khaw, K.W. Tan, M.L. Chan, I. Rodriguez, Fluidic lenses with variable focal length. Appl. Phys. Lett. 88, 041120 (2006)

    Article  ADS  Google Scholar 

  13. H. Ren, D. Fox, P.A. Anderson, B. Wu, S.T. Wu, Tunable-focus liquid lens controlled using a servo motor. Opt. Express 14, 8031–8036 (2006)

    Article  ADS  Google Scholar 

  14. L. Hou, N. Smith, J. Heikenfeld, Electrowetting modulation of any flat optical film. Appl. Phys. Lett. 90, 251114 (2007)

    Article  ADS  Google Scholar 

  15. N. Smith, D. Abeysinghe, J. Heikenfeld, J.W. Haus, Agile wide-angle beam steering with electrowetting microprisms. Opt. Express 14, 6557 (2006)

    Article  ADS  Google Scholar 

  16. B. Sun, K. Zhou, Y. Lao, W. Cheng, J. Heikenfeld, Scalable fabrication of electrowetting pixel arrays with self-assembled oil dosing. Appl. Phys. Lett. 91, 011106 (2007)

    Article  ADS  Google Scholar 

  17. J.L. Lin, G.B. Lee, Y.H. Chang, K.Y. Lien, Model description of contact angles in electrowetting on dielectric layers. Langmuir 22, 484–489 (2006)

    Article  Google Scholar 

  18. W.H. Hsieh, J.H. Chen, Lens-profile control by electrowetting fabrication technique. IEEE Photon. Tech. Lett. 17, 606–608 (2005)

    Article  ADS  Google Scholar 

  19. H. Ren, S.T. Wu, Tunable-focus liquid microlens array using dielectrophoretic effect. Opt. Express 16, 2646–2652 (2008)

    Article  ADS  Google Scholar 

  20. K.H. Jeong, G.L. Liu, N. Chronis, L.P. Lee, Tunable microdoublet lens array. Opt. Express 12, 2494–2500 (2004)

    Article  ADS  Google Scholar 

  21. D. Grahan-Rowe, Liquid lenses make a splash. Nat. Photon. Volume sample, 2–4 (2006)

    Google Scholar 

  22. G. Beni, M.A. Tenan, Dynamics of electrowetting displays. J. Appl. Phys. 52, 6011–6015 (1981)

    Article  ADS  Google Scholar 

  23. R. Hayes, D.J. Feenstra, Video-speed electronic paper based on electrowetting. Nature 425, 383–385 (2003)

    Article  ADS  Google Scholar 

  24. D. Psaltis, S.R. Quache, C. Yang, Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006)

    Article  ADS  Google Scholar 

  25. F. Mugele, S. Herminghaus, Electrostatic stabilization of fluid microstructures. Appl. Phys. Lett. 81, 2303–2305(2002)

    Article  ADS  Google Scholar 

  26. E.L. Wooten et al., A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000)

    Article  Google Scholar 

  27. R.L. Byer, Nonlinear optics and solid-state lasers: 2000. IEEE J. Sel. Top. Quantum Electron. 6, 911–930 (2000)

    Article  Google Scholar 

  28. M. Yamada, N. Nada, M. Saitoh, K. Watanabe, First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl. Phys. Lett. 62, 435–436 (1993)

    Article  ADS  Google Scholar 

  29. S. Grilli, M. Paturzo, L. Miccio, P. Ferraro, In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy. Meas. Sci. Tech. 19, 074008 (2008)

    Article  ADS  Google Scholar 

  30. S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, P. Ferraro, Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates. Opt. Express 16, 8084–8093 (2008)

    Article  ADS  Google Scholar 

  31. K. Nassau, H.J. Levinstein, G.M. Loiacono, The domain structure and etching of ferroelectric lithium niobate. Appl. Phys. Lett. 6, 228–229 (1965)

    Article  ADS  Google Scholar 

  32. S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, M. Vassalli, Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching. Appl. Phys. Lett. 87, 233106–3 (2005)

    Article  ADS  Google Scholar 

  33. V. Gopalan, T.E. Mitchell, In situ video observation of 180\(^{\circ}\) domain switching in LiTaO3 by electro-optic imaging microscopy. J. Appl. Phys. 85, 2304–2311 (1999)

    Google Scholar 

  34. R.S. Weis, T.K. Gaylord, Lithium niobate: Summary of physical properties and crystal structure. Appl. Phys. A 37, 191–203 (1985)

    Article  ADS  Google Scholar 

  35. E.M. Bourim, C.-W. Moon, S.-W. Lee, I.K. Yoo, Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals. Phys. B 383, 171–182 (2006)

    Article  ADS  Google Scholar 

  36. B. Rosenblum, P. Bräunlich, J.P. Carrico, Thermally stimulated field emission from pyroelectric LiNbO3. Appl. Phys. Lett. 25, 17–19 (1974)

    Article  ADS  Google Scholar 

  37. G. Rosenman, D. Shur, Y.E. Krasik, A. Dunaevsky, Electron emission from ferroelectrics. J. Appl. Phys. 88, 6109–6161 (2000)

    Article  ADS  Google Scholar 

  38. E. Colgate, H. Matsumoto, An investigation of electrowetting-based micro actuation. J. Vac. Sci. Technol. A 8, 3625–3633 (1990)

    Article  ADS  Google Scholar 

  39. M.G. Lippmann, Relations entre les phénomènes électrique et capillaries. Ann. Chim. Phys. 5, 494 (1875)

    Google Scholar 

  40. F. Beunis, F. Strubbe, M. Marescaux, K. Neyts, A.R.M. Verschueren, Diffuse double layer charging in nonpolar liquids. Appl. Phys. Lett. 91, 182911–182913 (2007)

    Article  ADS  Google Scholar 

  41. F. Mugele, J.-C. Baret, Electrowetting: from basics to applications. J. Phys. Condens. Matt. 17, R705–R774 (2005)

    Article  ADS  Google Scholar 

  42. P. Ferraro, S. De Nicola, G. Coppola, in Optical Imaging Sensors and Systems for Homeland Security Applications, vol. 2, Series ed. by B. Javidi. Digital holography: recent advancements and prospective improvements for applications in microscopy. Advanced Sciences and Technologies for Security Applications. (Springer, Heidelberg, 2005), pp. 47–84

    Google Scholar 

  43. L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, P. Ferraro, Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy. Opt. Express 17, 2487–2499 (2009)

    Article  ADS  Google Scholar 

  44. G. Milne, G.D.M. Jeffries, D.T. Chiu, Tunable generation of Bessel beams with a fluidic axicon. Appl. Phys. Lett. 92, 261101 (2008)

    Article  ADS  Google Scholar 

  45. X. Mao, J.R. Waldeisen, B.K. Juluri, T.J. Huang, Hydrodynamically tunable optofluidic cylindrical microlens. Lab. Chip 7, 1303–1308 (2007)

    Article  Google Scholar 

  46. X. Huang et al., Thermally tunable polymer microlenses. Appl. Phys. Lett. 92, 251904 (2008)

    Article  ADS  Google Scholar 

  47. Y. Choi, H.R. Kim, K.H. Lee, Y.M. Lee, J.H. Kim, A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer. Appl. Phys. Lett. 91, 221113 (2007)

    Article  ADS  Google Scholar 

  48. H. Ren, Y.H. Fan, S.T. Wu, Liquid-crystal microlens arrays using patterned polymer networks. Opt. Lett. 29, 1608–1610 (2004)

    Article  ADS  Google Scholar 

  49. Y.-H. Lin et al., Tunable- focus cylindrical liquid crystal lenses. Jpn. J. Appl. Phys. 44, 243–244 (2005)

    Article  ADS  Google Scholar 

  50. J.-H Lee et al., Efficiency improvement and image quality of organic light-emitting display by attaching cylindrical microlens arrays. Opt. Express 16, 21184–21190 (2008)

    Article  ADS  Google Scholar 

  51. D. Xia, S.R.J. Brueck, Strongly anisotropic wetting on one-dimensional nanopatterned surfaces. Nano Lett. 8, 2819–2824 (2008)

    Article  ADS  Google Scholar 

  52. L. Miccio, M. Paturzo, S. Grilli, V. Vespini, P. Ferraro, Hemicylindrical and Toroidal Liquid Microlens formed by Pyro-Electro-Wetting (PEW). Opt. Lett. 34, 1075–1077 (2009)

    Article  ADS  Google Scholar 

  53. A. Kiraz, Y. Karadag, A.F. Coskun, Spectral tuning of liquid microdroplets standing on a superhydrophobic surface using electrowetting. Appl. Phys. Lett. 92, 1911041–1911043 (2008)

    Google Scholar 

  54. S.I. Shopova, H. Zhou, X. Fan, P. Zhang, Optofluidic ring resonator based dye laser. Appl. Phys. Lett. 90, 2211011–2211013 (2007)

    Article  Google Scholar 

  55. P. Ferraro, S. Grilli, M. Paturzo, S. De Nicola, in Ferroelectric Crystals For Photonic Applications, eds. by P. Ferraro, S. Grilli, P. De Natale. Visual and quantitative characterization of ferroelectric crystals and related domain engineering processes by interferometric techniques. (Springer, Heidelberg, 2008), pp. 165–208

    Google Scholar 

  56. T.K. Shih, J.R. Ho, J.W.J. Cheng, A new approach to polymeric microlens array fabrication using soft replica molding. IEEE Phot. Tech. Lett. 16, 2078 (2004)

    Article  ADS  Google Scholar 

  57. T.K. Shih, C.F. Chen, J.R. Ho, F.T. Chuang, Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding. Microelectron. Eng. 83, 2499 (2006)

    Article  Google Scholar 

  58. C.Y. Chang, S.Y. Yang, L.S. Huang, K.H. Hsieh, Fabrication of polymer microlens arrays using capillary forming with a soft mold of micro-holes array and UV-curable polymer. Opt. Express 14, 6253 (2006)

    Article  ADS  Google Scholar 

  59. S. Grilli, V. Vespini, P. Ferraro, Surface-charge lithography for direct PDMS micro-patterning. Langmuir 24, 13262 (2008)

    Article  Google Scholar 

  60. H.O. Jacobs, G.M. Whitesides, Submicrometer patterning of charge in thin-film electrets. Science 291, 1763–1766 (2001)

    Article  ADS  Google Scholar 

  61. E.P. Chan, A.J. Crosby, Fabricating microlens arrays by surface wrinkling. Adv. Mater. 18, 3238 (2006)

    Article  Google Scholar 

  62. F. Merola, M. Paturzo, S. Coppola, V. Vespini, P. Ferraro, Self-patterning of a polydimethylsiloxane microlens array on functionalized substrates and characterization by digital holography. J. Micromech. Microeng. 19, 125006 (5pp) (2009)

    Article  ADS  Google Scholar 

  63. S.Y. Lee, H.W. Tung, W.C. Chen, W. Fang, Thermal actuated solid tunable lens. IEEE Phot. Tech. Lett. 18, 2191 (2006)

    Article  ADS  Google Scholar 

  64. P. Ferraro, S. Grilli, L. Miccio, V. Vespini, Wettability patterning of lithium niobate substrate by modulating pyroelectric effect to form microarray of sessile droplets. Appl. Phys. Lett. 92, 213107 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simonetta Grilli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grilli, S. et al. (2011). Quantitative Phase Microscopy for Accurate Characterization of Microlens Arrays. In: Ferraro, P., Wax, A., Zalevsky, Z. (eds) Coherent Light Microscopy. Springer Series in Surface Sciences, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15813-1_5

Download citation

Publish with us

Policies and ethics