Skip to main content

Three-Dimensional Mapping and Ranging of Objects Using Speckle Pattern Analysis

  • Chapter
  • First Online:
Coherent Light Microscopy

Abstract

In this chapter, we present two novel approaches for 3-D object shape measurement and range estimation based on digital image processing of speckle patterns. In the first one, 3-D mapping and range measurement are retrieved by projecting, through a ground glass diffuser, random speckle patterns on the object or on the camera for a transmissive and reflective configuration, respectively. Thus, the camera sensor records in time sequence different speckle patterns at different distances, and by using correlation operation between them, it is possible to achieve 3-D mapping and range finding. In the second one, the 3-D mapping and ranging are performed by sensing the visibility associated with the coherence function of a laser source used to illuminate the object. In this case, the object depth is encoded into the amplitude of the interference pattern when assembling a typical electronic speckle pattern interferometric (ESPI) layout. Thus, the 3-D object shape is reconstructed by means of a range image from the visibility of the image set of interferograms without the need for depth scanning. In both cases, we present experimental implementation validating the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Chen, G.M. Brown, M. Song, Overview of three-dimensional shape measurement using optical methods. Opt. Eng. 39, 10–22 (2000)

    Article  ADS  Google Scholar 

  2. O. Matoba, B. Javidi, Encrypted optical memory system using three-dimensional keys in the Fresnel domain. Opt. Lett. 24, 762–764 (1999)

    Article  ADS  Google Scholar 

  3. E. Tajahuerce, B. Javidi, Encrypting three-dimensional information with digital holography. Appl. Opt. 39, 6595–6601 (2000)

    Article  ADS  Google Scholar 

  4. T. Poon, T. Kim, Optical image recognition of three-dimensional objects. Appl. Opt. 38, 370–381 (1999)

    Article  ADS  Google Scholar 

  5. J.J. Esteve-Taboada, J. García, C. Ferreira, Rotation-invariant optical recognition of three-dimensional objects. Appl. Opt. 39, 5998–6005 (2000)

    Article  ADS  Google Scholar 

  6. M. Takeda, K. Mutoh, Fourier transform profilometry for the automatic measurement of 3-D object shapes. Appl. Opt. 22, 3977–3882 (1983)

    Article  ADS  Google Scholar 

  7. V. Srinivasan, H.C. Liu, M. Halioua, Automated phase-measuring profilometry of 3-D diffuse objects. Appl. Opt. 23, 3105–3108 (1984)

    Article  ADS  Google Scholar 

  8. W.H. Su, Color-encoded fringe projection for 3D shape measurements. Opt. Express 15, 13167–13181 (2007)

    Article  ADS  Google Scholar 

  9. U. Schnars, W. Jüptner, Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt. 33, 179–181 (1994)

    Article  ADS  Google Scholar 

  10. G. Pedrini, P. Fröning, H.J. Tiziani, F.M. Santoyo, Shape measurement of microscopic structures using digital holograms. Opt. Commun. 164, 257–268 (1999)

    Article  ADS  Google Scholar 

  11. C. Quan, X.Y. He, C.F. Wang, C.J. Tay, H.M. Shang, Shape measurement of small objects using LCD fringe projection with phase-shifting. Opt. Commun. 189, 21–29 (2001)

    Article  ADS  Google Scholar 

  12. G. Indebetouw, Profile measurement using projection of running fringes. Appl. Opt. 17, 2930–2933 (1978)

    Article  ADS  Google Scholar 

  13. W. Su, Ch. Kuo, Ch. Wang, Ch. Tu, Projected fringe profilometry with multiple measurements to form an entire shape. Opt. Express 16, 4069–4077 (2008)

    Article  ADS  Google Scholar 

  14. M. Halioua, R.S. Krishnamurthy, H. Liu, F. Chiang, Automated 360° profilometry of 3-D diffuse objects. Appl. Opt. 24, 2193–2196 (1985)

    Article  ADS  Google Scholar 

  15. G. J. Iddan, G. Yahav, 3D imaging in the studio. Three-dimensional image capture and applications IV. Proc. Soc. Photo-Opt. Instrum. Eng. 4298, 48–55 (2001)

    Google Scholar 

  16. N. Abramson, Time reconstructions in light-in-flight recording by holography. Appl. Opt. 30, 1242–1252 (1991)

    Article  ADS  Google Scholar 

  17. B.P. Hildebrand, K.A. Haines, Multiple wavelength and multiple source holography applied to contour generation. J. Opt. Soc. Am. 57, 155–159 (1967)

    Article  ADS  Google Scholar 

  18. R.S. Sirohi, Speckle Metrology (Marcel Dekker, New York, NY, 1993)

    Google Scholar 

  19. I. Yamaguchi, T. Zhang, Phase-shifting digital holography. Opt. Lett. 22, 1268–1270 (1997)

    Article  ADS  Google Scholar 

  20. J.M. Huntley, in Digital Speckle Pattern Interferometry and Related Techniques, Chapter 2, ed. by P.K. Rastogi. Automated analysis of speckle interferograms. (Wiley, New York, NY, 2001), pp. 59–140

    Google Scholar 

  21. H.O. Saldner, J.M. Huntley, Temporal phase unwrapping: Application to surface profiling of discontinuous objects. Appl. Opt. 36, 2770–2775 (1997)

    Article  ADS  Google Scholar 

  22. M. Sjödahl, Electronic speckle photography: Increased accuracy by non-integral pixel shifting. Appl. Opt. 33, 6667–6673 (1994)

    Article  ADS  Google Scholar 

  23. M. Sjödal, P. Synnergren, Measurement of shape by using projected random patterns and temporal digital speckle photography. Appl. Opt. 38, 1990–1997 (1999)

    Article  ADS  Google Scholar 

  24. B.J. Guo, S.L. Zhuang, Image superresolution by using a source-encoding technique. Appl. Opt. 30, 5159–5162 (1991)

    Article  ADS  Google Scholar 

  25. Z. Zalevsky, J. García, P. García-Martínez, C. Ferreira, Spatial information transmission using orthogonal mutual coherence coding. Opt. Lett. 30, 2837–2839 (2005)

    Article  ADS  Google Scholar 

  26. V. Micó, J. García, C. Ferreira, D. Sylman, Z. Zalevsky, Spatial information transmission using axial temporal coherence coding. Opt. Lett. 32, 736–738 (2007)

    Article  ADS  Google Scholar 

  27. D. Sylman, Z. Zalevsky, V. Micó, C. Ferreira, J. García, Two-dimensional temporal coherence coding for super resolved imaging. Opt. Commun. 282, 4057–4062 (2009)

    Article  ADS  Google Scholar 

  28. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Science 254, 1178 (1991)

    Article  ADS  Google Scholar 

  29. A.F. Fercher, C.K. Hitzenberger, Optical coherence tomography. Prog. Opt. 44, 215–302 (2002)

    Article  Google Scholar 

  30. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, C.D. Depeursinge, Time-domain optical coherence tomography with digital holographic microscopy. Appl. Opt. 44, 1806–1812 (2005)

    Article  ADS  Google Scholar 

  31. L. Martínez-León, G. Pedrini, W. Osten, Applications of short-coherence digital holography in microscopy. Appl. Opt. 44, 3977–3984 (2005)

    Article  ADS  Google Scholar 

  32. C. Yuan, H. Zhai, X. Wang, L. Wu, Lensless digital holography with short-coherence light source for three-dimensional surface contouring of reflecting micro-objects. Opt. Commun. 270, 176–179 (2007)

    Article  ADS  Google Scholar 

  33. Z. Zalevsky, O. Margalit, E. Vexberg, R. Pearl, J. García, Suppression of phase ambiguity in digital holography by using partial coherence or specimen rotation. Appl. Opt. 47, D154–D163 (2008)

    Article  ADS  Google Scholar 

  34. G. Pedrini, W. Osten, Y. Zhang, Wave-front reconstruction from a sequence of interferograms recorded at different planes. Opt. Lett. 30, 833–835 (2005)

    Article  ADS  Google Scholar 

  35. P. Almoro, G. Pedrini, W. Osten, Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field. Appl. Opt. 45, 8596–8605 (2006)

    Article  ADS  Google Scholar 

  36. P.F. Almoro, S.G. Hanson, Object wave reconstruction by speckle illumination and phase retrieval. J. Eur. Opt. Soc. – Rap. Public 4, 09002 (2009)

    Article  Google Scholar 

  37. P. Bao, F. Zhang, G. Pedrini, W. Osten, Phase retrieval using multiple illumination wavelengths. Opt. Lett. 33, 309–311 (2008)

    Article  ADS  Google Scholar 

  38. A. Anand, V.K Chhaniwal, P. Almoro, G. Pedrini, W. Osten, Shape and deformation measurements of 3D objects using volume speckle field and phase retrieval. Opt. Lett. 34, 1522–1524 (2009)

    Article  ADS  Google Scholar 

  39. P.F. Almoro, G. Pedrini, A. Anand, W. Osten, S.G. Hanson, Angular displacement and deformation analyses using a speckle-based wavefront sensor. Appl. Opt. 48, 932–940 (2009)

    Article  Google Scholar 

  40. T. Dressel, G. Hausler, H. Venzhe, Three dimensional sensing of rough surfaces by coherence radar. Appl. Opt. 31, 919–925 (1992)

    Article  ADS  Google Scholar 

  41. G.R. Hallerman, L.G. Shirley, A comparison of surface contour measurements based on speckle pattern sampling and coordinate measurement machines. Proc. SPIE 2909, 89–97 (1996)

    Article  ADS  Google Scholar 

  42. J. García, Z. Zalevsky, P. García-Martínez, C. Ferreira, M. Teicher, Y. Beiderman, Three-dimensional mapping and range measurement by means of projected speckle patterns. Appl. Opt. 47, 3032–3040 (2008)

    Article  ADS  Google Scholar 

  43. J.W. Goodman, Speckle Phenomena in Optics (Roberts and Company Publishers, Greenwood Village, USA, 2006)

    Google Scholar 

  44. E. Valero, V. Micó, Z. Zalevsky, J. García, Depth sensing using coherence mapping. Opt. Comm. 283, 3122–3128 (2010)

    Article  ADS  Google Scholar 

  45. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Science 254, 1178–1181 (1991)

    Article  ADS  Google Scholar 

  46. T.C. Chen, B. Cense, M.C. Pierce, N. Nassif, B.H. Park, S.H. Yun, B.R. White, B.E. Bouma, G.J. Tearney, J.F. de Boer, Spectral domain optical coherence tomography – Ultra-high speed, ultra-high resolution ophthalmic imaging. Arch. Ophthalmol. 123, 1715–1720 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Micó, V. et al. (2011). Three-Dimensional Mapping and Ranging of Objects Using Speckle Pattern Analysis. In: Ferraro, P., Wax, A., Zalevsky, Z. (eds) Coherent Light Microscopy. Springer Series in Surface Sciences, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15813-1_13

Download citation

Publish with us

Policies and ethics