Skip to main content

Terahertz and Infrared Quantum Cascade Lasers

  • Chapter
  • First Online:
Terahertz Technology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 77))

Abstract

The generation of mid-infrared and terahertz portion of the optical spectrum using the Quantum Cascade Laser (QCL) technology has the potential of making cheap, powerful optical, room temperature sources. In the mid-infrared spectral region, where continuous wave room temperature operation of the QCL devices was achieved, the main goal will be to further broaden the frequency range over which these high performances are achieved. Other important topic is the developing of devices with a very large active broadband region, with tuning range of more than 250 cm−1 for a laser emission centered at 1000 cm−1. However, the overall level of performance of the THz QCL’s (higher operating temperatures and longer wavelengths) in comparison to mid-infrared is much lower with the maximum known operating temperature and wavelength still being 160 K and 180 μm (1.7 THz) respectively. For this reason, the focus is to find solutions for optical laser cavity. Finally, as far as the photonic side is concerned, the concentration is on the realization of waveguides and resonators based on the sandwiching technique used for two metallic layers surface plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Helm, M., England, P., Colas, E., DeRosa, F., Allen, S.J.: Intersubband emission from semiconductor superlattices excited by sequential resonant tunneling. Phys. Rev. Lett. 63(1), 74–77 (1989)

    Article  CAS  Google Scholar 

  2. Köhler, R., Tredicucci, A., Beltram, F., Beere, H.E., Linfield, E.H., Davies, A.G., Ritchie, D.A.: High-intensity interminiband terahertz emission from chirped superlattices. Appl. Phys. Lett. 80(11), 1867–1869 (2002)

    Article  Google Scholar 

  3. Blaser, S., Rochat, M., Beck, M., Faist, J., Oesterle, U.: Far-infrared emission and stark-cyclotron resonances in a quantum cascade structure based on photon-assisted tunneling transition. Phys. Rev. B 61(12), 8369–8374 (2000)

    Article  CAS  Google Scholar 

  4. Kazarinov, R.F., Suris, R.A.: Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice. Sov. Phys. Semicond. 5(4), 707–709 (1971)

    Google Scholar 

  5. Kazarinov, R.F., Suris, R.A.: Electric and electromagnetic properties of semiconductors with a superlattice. Sov. Phys. Semicond. 6(1), 120–131 (1972)

    Google Scholar 

  6. Faist, J., Capasso, F., Sivco, D.L., Sirtori, C., Hutchinson, A.L., Cho, A.Y.: Quantum cascade laser. Science 264, 553–556 (1994)

    Article  CAS  Google Scholar 

  7. Köhler, R., Tredicucci, A., Beltram, F., Beere, H.E., Linfield, E.H., Davies, A.G., Ritchie, D.A., Iotti, R.C., Rossi, F.: Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002)

    Article  Google Scholar 

  8. Ulrich, J., Zobl, R., Finger, N., Unterrainer, K., Strasser, G., Gornik, E.: Terahertz-electroluminescence in a quantum cascade structure. Physica B 272, 216–218 (1999)

    Article  CAS  Google Scholar 

  9. Sirtori, C., Faist, J., Capasso, F., Sivco, D.L., Hutchinson, A.L., Cho, A.Y.: Quantum cascade laser with plasmon-enhanced waveguide operating at 8.4 μm wavelength. Appl. Phys. Lett. 66(24), 3242–3244 (1995)

    Article  CAS  Google Scholar 

  10. Williams, B.S.: Terahertz quantum-cascade lasers. Nat. Photon. (Rev. Artic.) 1, 517–525 (2007). www.nature.com/naturephotonics

  11. Rochat, M., Ajili, L., Willenberg, H., Faist, J., Beere, H., Davies, G., Linfield, E., Ritchie, D.: Low-threshold terahertz quantum-cascade lasers. Appl. Phys. Lett. 81(8), 1381–1383 (2002)

    Article  CAS  Google Scholar 

  12. Tredicucci, A., Capasso, F., Gmachl, C., Sivco, D.L., Hutchinson, A.L., Cho, A.Y., Faist, J., Scamarcio, G.: High-power inter-miniband lasing in intrinsic superlattices. Appl. Phys. Lett. 72(19), 2388–2390 (1998)

    Article  CAS  Google Scholar 

  13. Helm, M.: Infrared spectroscopy and transport of electrons in semiconductor superlattices. Semicond. Sci. Technol. 10, 557–575 (1995)

    Article  CAS  Google Scholar 

  14. Köhler, R., Tredicucci, A., Beltram, F., Beere, H.E., Linfield, E.H., Davies, A.G., Ritchie, D.A.: Low-threshold quantum-cascade lasers at 3.5 THz (λ = 85 μm). Opt. Lett. 28(10), 810–812 (2003)

    Article  Google Scholar 

  15. Faist, J., Beck, M., Aellen, T., Gini, E.: Quantum cascade lasers based on a bound-to-continuum transition. Appl. Phys. Lett. 78(2), 147–149 (2001)

    Article  CAS  Google Scholar 

  16. Scalari, G., Ajili, L., Faist, J., Beere, H., Linfield, E., Ritchie, D., Davies, G.: Far-infrared (λ ~ 87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K. Appl. Phys. Lett. 82(19), 3165–3167 (2003)

    Article  CAS  Google Scholar 

  17. Ajili, L., Scalari, G., Faist, J., Beere, H., Linfield, E., Ritchie, D., Davies, G.: High power quantum cascade lasers operating at λ ~ 87 μm and 130 μm. Appl. Phys. Lett. 85(18), 3986–3988 (2004)

    Article  CAS  Google Scholar 

  18. Williams, B.S., Callebaut, H., Kumar, S., Hu, Q., Reno, J.L.: 3.4-THz quantum cascade laser based on longitudinal–optical–phonon scattering for depopulation. Appl. Phys. Lett. 82(7), 1015–1017 (2003)

    Article  CAS  Google Scholar 

  19. Williams, B.S., Kumar, S., Hu, Q., Reno, J.L.: Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode. Opt. Express 13, 3331–3339 (2005)

    Article  Google Scholar 

  20. Kohler, R., Tredicucci, A., Mauro, C., Beltram, F., Beere, H.E., Linfield, E.H., Davies, A.G., Ritchie, D.A.: Terahertz quantum-cascade lasers based on an interlaced photon–phonon cascade. Appl. Phys. Lett. 84(8), 1266–1268 (2004)

    Article  CAS  Google Scholar 

  21. Scalari, G., Hoyler, N., Giovannini, M., Faist, J.: Terahertz bound-to-continuum quantum-cascade lasers based on optical–phonon scattering extraction. Appl. Phys. Lett. 86, 181101-1–181101-3 (2005)

    Article  Google Scholar 

  22. Yariv, A.: Quantum Electronics, 3rd edn. Wiley, New York (1989)

    Google Scholar 

  23. Sirtori, C., Kruck, P., Barbieri, S., Page, H., Nagle, J., Beck, M., Faist, J., Oesterle, U.: Low-loss al-free waveguides for unipolar semiconductor lasers. Appl. Phys. Lett. 75(25), 3911–3913 (1999)

    Article  CAS  Google Scholar 

  24. Strasser, G., Gianordoli, S., Hvozdara, L., Schrenk, W., Unterrainer, K., Gornik, E.: GaAs/AlGaAs superlattice quantum cascade lasers at λ ≈ 13 μm. Appl. Phys. Lett. 75(10), 1345–1348 (1999)

    Article  CAS  Google Scholar 

  25. Becker, C., Sirtori, C., Page, H., Glastre, G., Ortiz, V., Marcadet, X., Stellmacher, M., Nagle, J.: GaAs/AlGaAs quantum cascade lasers based on large direct conduction band discontinuity. Appl. Phys. Lett. 77(4), 463–465 (2000)

    Article  CAS  Google Scholar 

  26. Wilson, L.R., Keightley, P.T., Cockburn, J.W., Skolnick, M.S., Clark, J.C., Grey, R., Hill, G.: Controlling the performance of GaAsAlGaAs quantum-cascade lasers via barrier height modifications. Appl. Phys. Lett. 76(7), 801–804 (2000)

    Article  CAS  Google Scholar 

  27. Wilson, L.R., Cockburn, J.W., Steer, M.J., Carder, D.A., Skolnick, M.S., Hopkinson, M., Hill, G.: Decreasing the emission wavelength of GaAsAlGaAs quantum cascade lasers by the incorporation of ultrathin InGaAs layers. Appl. Phys. Lett. 78(4), 413–415 (2001)

    Article  CAS  Google Scholar 

  28. Colombelli, R., Capasso, F., Gmachl, C., Hutchinson, A.L., Sivco, D.L., Tredicucci, A., Wanke, M.C., Sergent, A.M., Cho, A.Y.: Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths. Appl. Phys. Lett. 78(18), 2620–2622 (2001)

    Article  CAS  Google Scholar 

  29. Sirtori, C., Gmachl, C., Capasso, F., Faist, J., Sivco, D.L., Hutchinson, A.L., Cho, A.Y.: Long-wavelength (λ ≈ 8–11.5 μm) semiconductor lasers with waveguides based on surface plasmons. Opt. Lett. 23(17), 1366–1368 (1998)

    Article  CAS  Google Scholar 

  30. Tredicucci, A., Gmachl, C., Wanke, M.C., Capasso, F., Hutchinson, A.L., Sivco, D.L., Chu, S.G., Cho, A.Y.: Surface plasmon quantum cascade lasers at λ ~ 19 μm. Appl. Phys. Lett. 77(15), 2286–2288 (2000)

    Article  CAS  Google Scholar 

  31. Faist, J., Capasso, F., Sirtori, C., Sivco, D.L., Cho, A.Y.: Quantum cascade lasers. In: Liu, H.C., Capasso, F. (eds.) Intersubband Transitions in Quantum Wells: Physics and Device Applications II, vol. 66, Chapter 1, pp. 1–83, Academic Press, San Diego (2000)

    Google Scholar 

  32. Gmachl, C., Capasso, F., Tredicucci, A., Sivco, D.L., Hutchinson, A.L., Cho, A.Y.: Long wavelength (λ ~ 13 μm) quantum cascade lasers. IEE Elect. Lett. 34(11), 1103–1104 (1998)

    Article  CAS  Google Scholar 

  33. Tredicucci, A., Gmachl, C., Capasso, F., Sivco, D.L., Hutchinson, A.L., Cho, A.Y.: Long wavelength superlattice quantum cascade lasers at λ = 17 μm. Appl. Phys. Lett. 74(5), 638–640 (1999)

    Article  CAS  Google Scholar 

  34. Tredicucci, A., Gmachl, C., Capasso, F., Hutchinson, A.L., Sivco, D.L., Cho, A.Y.: Single-mode surface-plasmon laser. Appl. Phys. Lett. 76(16), 2164–2166 (2000)

    Article  CAS  Google Scholar 

  35. Rochat, M., Beck, M., Faist, J., Oesterle, U.: Measurement of far-infrared waveguide loss using a multisection single-pass technique. Appl. Phys. Lett. 78(14), 1967–1969 (2001)

    Article  CAS  Google Scholar 

  36. Faist, J., Gmachl, C., Capasso, F., Sirtori, C., Sivco, D.L., Baillargeon, J.N., Cho, A.Y.: Distributed feedback quantum cascade lasers. Appl. Phys. Lett. 70(20), 2670–2672 (1997)

    Article  CAS  Google Scholar 

  37. Gmachl, C., Faist, J., Baillargeon, J.N., Capasso, F., Sirtori, C., Sivco, D.L., Chu, S.G., Cho, A.Y.: Complex-coupled quantum cascade distributed-feedback laser. IEEE Photon. Technol. Lett. 9(8), 1090–1092 (1997)

    Article  Google Scholar 

  38. Gmachl, C., Capasso, F., Faist, J., Hutchinson, A.L., Tredicucci, A., Sivco, D.L., Baillargeon, J.N., Chu, S.G., Cho, A.Y.: Continuous-wave and high-power pulsed operation of index-coupled distributed quantum cascade laser at λ~8.5 μm. Appl. Phys. Lett. 72(12), 1430–1432 (1998)

    Article  CAS  Google Scholar 

  39. Hofstetter, D., Faist, J., Beck, M., Oesterle, U.: Surface-emitting 10.1 μm quantum-cascade distributed feedback lasers. Appl. Phys. Lett. 75(24), 3769–3771 (1999)

    Article  CAS  Google Scholar 

  40. Hofstetter, D., Faist, J., Beck, M., Muller, A., Oesterle, U.: Demonstration of high-performance 10.16 μm quantum cascade distributed feedback lasers fabricated without epitaxial regrowth. Appl. Phys. Lett. 75(5), 665–667 (1999)

    Article  CAS  Google Scholar 

  41. Schrenk, W., Finger, N., Gianordoli, S., Hvozdara, L., Strasser, G., Gornik, E.: GaAs/AlGaAs distributed feedback quantum cascade lasers. Appl. Phys. Lett. 76(3), 253–255 (2000)

    Article  CAS  Google Scholar 

  42. Gmachl, C., Capasso, F., Tredicucci, A., Sivco, D.L., Baillargeon, J.N., Hutchinson, A.L., Cho, A.Y.: High power, continuous-wave, current-tunable, single-mode quantum-cascade distributed-feedback lasers at λ ~ 5.2 and λ ~ 7.95 μm. Opt. Lett. 25(4), 230–232 (2000)

    Article  CAS  Google Scholar 

  43. Callebaut, H., Kumar, S., Williams, B.S., Hu, Q., Reno, J.L.: Analysis of transport properties of tetrahertz quantum cascade lasers. Appl. Phys. Lett. 83(2), 207–209 (2003)

    Article  CAS  Google Scholar 

  44. Hu, Q.: Terahertz quantum cascade lasers and real-time THz imaging. Lasers and Electro-Optics Society, 2007. LEOS 2007. The Annual Meeting of the IEEE Conferences, 858–859 (2007). doi:10.1109/LEOS.2007.4382679

  45. Hu, Q.: Terahertz quantum cascade lasers and video-rate THz imaging. In: Infrared and Millimeter Waves, 2007 and the 2007 15th International Conference on Terahertz Electronics, IRMMW-THz., IEEE Conferences, 24–25 (2007)

    Google Scholar 

  46. Callebaut, H., Williams, B., Kumar, S., Hu, Q.: Analysis of transport properties of THz quantum cascade lasers. Chapter 34. Terahertz and Infrared Quantum Cascade Lasers, and Real-time Imaging, Sponsors, National Science Foundation, Grant ECS-0500925, NASA, Grant, NNG04GC11G, SPO #000059778, SPO #00009674, AFOSR, Grant FA9550-06-1-0462. www.rle.mit.edu/media/pr150/34.pdf

  47. Beck, M., Hofstetter, D., Aellen, T., Faist, J., Oesterle, U., Ilegems, M., Gini, E., Melchior, H.: Continuous wave operation of a mid-infrared semiconductor laser at room temperature. Science 295, 301–305 (2002)

    Article  CAS  Google Scholar 

  48. Evans, A., Darvish, S.R., Slivken, S., Nguyen, J., Bai, Y., Razeghia, M.: Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency. Appl. Phys. Lett. 91, 071101-1–071101-3 (2007)

    Google Scholar 

  49. Bai, Y., Darvish, S.R., Slivken, S., Zhang, W., Evans, A., Nguyen, J., Razeghi, M.: Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power. Appl. Phys. Lett. 92, 101105-1–101105-3 (2008)

    Google Scholar 

  50. Mukherjee, A., Prasanna, M., Lane, M., Go, R., Dunayevskiy, I., Tsekoun, A., Patel, C.K.N.: Optically multiplexed multi-gas detection using quantum cascade laser photoacoustic spectroscopy. Appl. Opt. 47, 4884–4887 (2008)

    Article  CAS  Google Scholar 

  51. Van Neste, C.W., Senesac, L.R., Thundat, T.: Standoff photoacoustic spectroscopy. Appl. Phys. Lett. 92, 234102-1–234102-3 (2008)

    Google Scholar 

  52. Taslakov, M., Simeonov, V., Van den Bergh, H.: Line-of-sight data transmission system based on Mid IR quantum cascade laser. Proc. SPIE 6877, 68770F.1–68770F.10 (2008)

    Google Scholar 

  53. Bai, Y., Slivken, S., Darvish, S.R., Razeghi, M.: Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency. Appl. Phys. Lett. 93, 021103-1–021103-3 (2008)

    Article  Google Scholar 

  54. Razeghi, M., Slivken, S., Bai, Y., Gokden, B., Darvish, S.R.: High power quantum cascade lasers. New J. Phys. 11, 125017(1–13) (2009)

    Google Scholar 

  55. Bismuto, A., Gresch, T., Bachle, A., Faist, J.: Large cavity quantum cascade lasers with InP interstacks. Appl. Phys. Lett. 93, 231104-1–231104-3 (2008)

    Article  Google Scholar 

  56. Slivken, S., Evans, A., Zhang, W., Razeghi, M.: High-power, continuous-operation intersubband laser for wavelengths greater than 10 μm. Appl. Phys. Lett. 90, 151115-1–151115-3 (2007)

    Article  Google Scholar 

  57. Vurgaftman, I., Meyer, J.R.: Photonic-crystal distributed-feedback quantum cascade lasers. IEEE J. Quantum Electron. 38, 592–602 (2002)

    Article  CAS  Google Scholar 

  58. Bai, Y., Darvish, S.R., Slivken, S., Sung, P., Nguyen, J., Evans, A., Zhang, W., Razeghi, M.: Electrically pumped photonic crystal distributed feedback quantum cascade lasers. Appl. Phys. Lett. 91, 141123-1–141123-3 (2007)

    Google Scholar 

  59. Tredicucci, A., Gmachl, C., Capasso, F., Sivco, D., Hutchinson, A., Cho, A.: A multiwavelength semiconductor laser. Nature 396, 350–353 (1998)

    Article  CAS  Google Scholar 

  60. Gmachl, C., Tredicucci, A., Sivco, D., Hutchinson, A., Capasso, F., Cho, A.: Bidirectional semiconductor laser. Science 286, 749–752 (1999)

    Article  CAS  Google Scholar 

  61. Owschimikow, N., Gmachl, C., Belyanin, A., Kocharovsky, V., Sivco, D., Colombelli, R., Capasso, F., Cho, A.: Resonant second-order nonlinear optical processes in quantum cascade lasers. Phys. Rev. Lett. 90, 043902-1–043902-4 (2003)

    Article  Google Scholar 

  62. Bengloan, J., Rossi, A., Ortiz, V., Marcadet, X., Calligaro, M., Maurin, I., Sirtori, C.: Intracavity sum-frequency generation in GaAs quantum cascade lasers. Appl. Phys. Lett. 84, 2019–2021 (2004)

    Article  CAS  Google Scholar 

  63. Chamberlin, D., Robrish, P., Trutna, W., Scalari, G., Giovannini, M., Ajili, L., Faist, J., Beere, H., Ritchie, D.: Amplification of terahertz radiation in delta-doped germanium thin films in terahertz and gigahertz electronics and photonics IV. Proc. SPIE 5727, 44–53 (2005)

    Article  Google Scholar 

  64. Straub, A., Gmachl, C., Sivco, D.L., Sergent, A.M., Capasso, F., Cho, A.Y.: Simultaneously at two wavelengths (5.0 and 7.5 μm) single mode and tunable quantum cascade distributed feedback lasers. Electron. Lett. 38, 565–567 (2002)

    Article  Google Scholar 

  65. Straub, A., Gmachl, C., Mosely, T.S., Colombelli, R., Troccoli, M., Sivco, D.L., et al.: Tow-wavelength quantum cascade lasers with heterogeneous cascade. In: Proceeding of IEEE Conference on Optoelectronic and Microelectronic Materials and Devices, pp. 141–144 (2002)

    Google Scholar 

  66. Gmachl, C., Shu, G., Howard, S.S., Toor, F., Dirisu, A., Malis, O., et al.: Multi-wavelength and nonlinear quantum cascade lasers. In: Proceeding of APS March Meeting (2006). http://meetings.aps.org/Meeting/MAR06/Event/41920

  67. Rosencher, E., Fiore, A., Vinter, B., Berger, V., Bois, Ph., Nagle, J.: Quantum engineering of optical nonlinearities. Science 271, 168–173 (1996)

    Article  CAS  Google Scholar 

  68. Bai, J., Citrin, D.S.: Optical and transport characteristics of quantum-cascade lasers with optimized second-harmonic generation. IEEE J. Quantum Electron. 43, 391–398 (2007)

    Article  CAS  Google Scholar 

  69. Austerer, M., Schartner, S., Pflügl, C., Andrews, A.M., Roch, T., Schrenk, W., Strasser, G.: Second-harmonic generation in GaAs-based quantum-cascade lasers. Physica E 35, 234–240 (2006)

    Article  CAS  Google Scholar 

  70. Mann, Ch., Yang, Q.K., Fuchs, F., Bronner, W., Kiefer, R., Köhler, K., Schneider, H., Kormann, R., Fischer, H., Gensty, T., Elsässer, W.: in Quantum Cascade Lasers for the Mid-infrared Spectral Range. Devices and Applications (Advance Solid State Physics 43), ed. by Kramer, B. (Springer, Berlin), pp. 351–368 (2003)

    Google Scholar 

  71. Schneider, H., Liu, H.C.: Quantum Well Infrared Photodetectors: Physics and Applications. Springer Series in Optical Sciences, vol. 126. Springer-Verlag, Berlin (2007)

    Google Scholar 

  72. Smet, J.H., Fonstad, C.G., Hu, Q.: Intrawell and interwell intersubband transitions in multiple quantum wells for far-infrared sources. J. Appl. Phys. 79, 9305–9320 (1996)

    Article  CAS  Google Scholar 

  73. Paiella, R.: Intersubband transitions in quantum structures. McGraw-Hill, New York (2006)

    Google Scholar 

  74. Köhler, R., Tredicucci, A., Beltram, F., Beere, H.E., Linfield, E.H., Davies, A.G., et al.: THz semiconductor-heterostructure laser. Nat. (Lond.) 417, 156–159 (2002)

    Article  Google Scholar 

  75. Williams, B.S., Kumar, S., Qin, Q., Hu, Q., Reno, J.L.: Terahertz quantum cascade lasers with double-resonant-phonon depopulation. Appl. Phys. Lett. 88, 261101-1–261101-3 (2006)

    Google Scholar 

  76. Walther, C., Scalari, G., Faist, J., Bree, H., Ritchie, D.: Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz. Appl. Phys. Lett. 89, 231121-1–231121-3 (2006)

    Article  Google Scholar 

  77. Luo, H., Laframboise, S.R., Wasilewski, Z.R., Aers, G.C., Liu, H.C., Cao, J.C.: Terahertz quantum-cascade lasers based on a three-well active module. Appl. Phys. Lett. 90, 041112-1–041112-3 (2007)

    Google Scholar 

  78. Bellotti, E., Driscoll, K., Moustakas, T.D., Paiella, R.: Monte Carlo study of GaN versus GaAs terahertz quantum cascade structures. Appl. Phys. Lett. 92, 101112-1–101112-3 (2008)

    Article  Google Scholar 

  79. Harima, H.: Properties of GaN and related compounds studied by means of Raman scattering. J. Phys. Condens. Matter. 14, R967–R993 (2002)

    Article  CAS  Google Scholar 

  80. Jovanovic, V.D., Indjin, D., Ikonic, Z., Harrison, P.: Simulation and design of GaN/AlGaN far-infrared (λ~34 μm) quantum-cascade laser. Appl. Phys. Lett. 84, 2995–2997 (2004)

    Article  CAS  Google Scholar 

  81. Sun, G., Soref, R.A., Khurgin, J.B.: Active region design of terahertz GaN/Al0.15Ga0.85N quantum cascade laser. Superlattices Microstruct. 37, 107–113 (2005)

    Article  CAS  Google Scholar 

  82. Harrison, P., Indjin, D., Jovanovic, V.D., Mircetic, A., Ikonic, Z., Kelsall, R.W., et al.: A physical model of quantum cascade lasers: application to GaAs, GaN and SiGe devices. Phys. Status Solidi A 202, 980–986 (2005)

    Article  CAS  Google Scholar 

  83. Scalari, G., Sirigu, L., Terazzi, R., Walther, C., Amanti, M.I., Giovannini, M., et al.: Multi-wavelength operation and vertical emission in THz quantum-cascade lasers. J. Appl. Phys. 101, 081726-1–081726-5 (2007)

    Article  Google Scholar 

  84. Indijan, D., Ikonić, Z., Jovonović, V.D., Harrison, P., Kelsall, R.W.: Relationship between carrier dynamics and temperature in terahertz quantum cascade structures: simulation of GaAs/AlGaAs, SiGe/Si and GaN/AlGaN devices. Semicond. Sci. Technol. 20, S237–S245 (2005)

    Article  Google Scholar 

  85. Ferreira, R., Bastard, G.: Evaluation of some scattering times for electrons in unbiased and biased single- and multiple-quantum-well structures. Phys. Rev. B 40, 1074–1086 (1989)

    Article  Google Scholar 

  86. Abbar, B., Bouhafs, B., Aourag, H., Nouet, G., Ruterana, P.: First-principles calculations of optical properties of AlN, GaN, and InN compounds under hydrostatic pressure. Phys. Status Solidi B 228(2), 457–460 (2001)

    Article  CAS  Google Scholar 

  87. Capasso, F., Tredicucci, A., Gmachl, C., Sivco, D.L., Hutchinson, A.L., Cho, A.Y., et al.: High-performance superlattice quantum cascade lasers. IEEE J. Sel. Top. Quantum Electron. 5, 792–807 (1999)

    Article  CAS  Google Scholar 

  88. Ajili, L.: Quantum cascade lasers at terahertz frequencies. These, Docteur En Sciences, Institut de physique Universite de Neuchatel (2007)

    Google Scholar 

  89. Colombelli, R., Straub, A., Capasso, F., Gmachl, C., Blakey, M.I., Sergent, A.M., Chu, S.N., West, K.W., Pfeiffer, L.N.: Terahertz electroluminescence from superlattice quantum cascade structures. J. Appl. Phys. 91(6), 3526–3529 (2002)

    Article  CAS  Google Scholar 

  90. Rostami, A., Baghban, H., Rasooli Saghai, H., Noori, M.: Linear frequency-doubling in dual Mid-IR-wavelength quantum cascade laser active region. Superlattices Microstruct 45, 134–142 (2009)

    Article  CAS  Google Scholar 

  91. Rostami, A., Mirzaei, B., Baghban, H.: Two-wavelength THz quantum cascade laser with highly enhanced temperature characteristics. In: Proceedings of SPIE-OSA-IEEE Asia Communications and Photonics, SPIE-OSA-IEEE, ACP 7631, 76310N-76310N-8 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Rostami .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer -Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rostami, A., Rasooli, H., Baghban, H. (2011). Terahertz and Infrared Quantum Cascade Lasers. In: Terahertz Technology. Lecture Notes in Electrical Engineering, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15793-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15793-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15792-9

  • Online ISBN: 978-3-642-15793-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics