Skip to main content

Elastomeric Nanocomposites for Tyre Applications

  • Chapter
  • First Online:
Recent Advances in Elastomeric Nanocomposites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 9))

Abstract

In this study the epoxidized natural rubber (ENR) and organoclay (Cloisite 20A) composites were prepared by solution mixing process. The obtained nanocomposites were incorporated in natural rubber (NR) and styrene butadiene rubber (SBR) blends in presence of varying types of carbon black as reinforcing fillers. Morphology, curing characteristics, mechanical and thermal properties were characterized and analyzed. Also, the wear characteristics of the nanocomposites against Du-Pont and DIN abrader were determined and discussed. The morphology of the organoclay incorporated in ENR shows a highly intercalated structure. ISAF type of carbon black shows a significant effect on curing and mechanical properties by reacting at the interface between SBR and NR matrix. Blends containing ISAF N234 type of carbon black shows high abrasion resistant properties against Du-Pont and DIN abrader.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pal, K., Pal, S.K.: National Seminar on “Tires in Mining & Allied Sectors: Status And Outlook”. ISM, Dhanbad, India (2003)

    Google Scholar 

  2. Potts, A.: Mining Magazine, May Ed (2004)

    Google Scholar 

  3. James, D.I. (ed.): Wear of Rubber. Maclaren and Sons Ltd., London (1967)

    Google Scholar 

  4. Pal, S.K.: Experimental investigations on wear of rubber by rocks. Ph.D. dissertation, IIT Kharagpur, India (2001)

    Google Scholar 

  5. Viswanath, N., Bellow, D.G.: Wear 181–183:42–49 (1995)

    Google Scholar 

  6. Rymuza, Z.: Wear in polymer micro-pairs, Proceedings of 3rd international conference on wear of materials, pp. 125–132 (1981)

    Google Scholar 

  7. Ratner, S.B., et al.: Sovt. Plast. 7, 37 (1964)

    Google Scholar 

  8. Lewis, R.B.: Mech. Eng. 86, 32–35 (1964)

    Google Scholar 

  9. Rhee, S.K.: Wear mechanisms for asbestos-reinforced automotive friction materials. Wear 29, 391–393 (1974)

    Google Scholar 

  10. Lancaster, J.K.: Friction and wear. In: Jenkins, A.D. (ed.) Polymer Sciences, Chapter 4 (1972)

    Google Scholar 

  11. Atkinson, J.R., Brown, K.J., Dawson, D.: The wear of high molecular weight polyethylene—Part I: the wear of isotropic polyethylene against dry stainless steel in unidirectional motion. J. Lubr. Technol. 100, 208–218 (1978)

    CAS  Google Scholar 

  12. Kar, M.K., Bahadur, S.: The wear equation for unfilled and filled polyoxymethylene. Wear 30, 337–348 (1974)

    CAS  Google Scholar 

  13. Mergler, Y.J., Schaake, R.P.: Relation between strain hardening and wear resistance of polymers. J. Appl. Polym. Sci. 92, 2689–2692 (2004)

    CAS  Google Scholar 

  14. Stejin, R.P.: In: Brostow, W., Corneliussen, R.D. (ed.): Failure of Plastics. Hanser Publishers, Munich, Chapter 19 (1986)

    Google Scholar 

  15. Briscoe, B.J.: In: Friedrich, K. (ed.) Composites Materials Series, vol. 1, Friction and Wear Of Polymer Composites. Elsevier, Amsterdam, Chapter 2 (1986)

    Google Scholar 

  16. Ratner, S.B., Farberova, I.I.: In: James, D.I. (ed.) Abrasion of Rubber. Maclaren and Sons Ltd., London (1967)

    Google Scholar 

  17. Lancaster, J.K.: Abrasive wear of polymers. Wear 14, 223–239 (1969)

    CAS  Google Scholar 

  18. Kragelskii, I.V., Nepomnyashchil, E.F.: Fatigue Mechanism of the Wear of the Tyre Treads, Abrasion of Rubber. Maclaren and Sons Ltd., London, pp. 3–13 (1967)

    Google Scholar 

  19. Schallamach, A.: Khin I Technol Polimersu 4 (1959)

    Google Scholar 

  20. Viehmann, W.: Surface heating by friction and abrasion by thermal decomposition. Rubber Chem. Technol. 31, 925 (1958)

    Google Scholar 

  21. Kragelskii, I.V., Nepomnyashcii, E.F.: In: James, D.I. (ed.) Wear of Rubber. Maclaren and Sons Ltd., London (1967)

    Google Scholar 

  22. Muhr, A.H., Roberts, A.D.: Rubber abrasion and wear. Wear 158, 213–228 (1992)

    CAS  Google Scholar 

  23. Schallamach, A.: Abrasion of rubber by a needle. J. Polym. Sci. 9, 385 (1952)

    CAS  Google Scholar 

  24. Schallamach, A.: The velocity and temperature dependence of rubber friction. Proc. Phys. Soc. B 66, 386 (1953)

    Google Scholar 

  25. Bekkedahl, N., Stiehler, R.D.: Natural and synthetic rubbers. Anal. Chem. 21(2), 266 (1949)

    CAS  Google Scholar 

  26. Box, G.E.P.: Problems in the analysis of growth and wear curves. Biometrics 6(4), 362 (1950)

    CAS  Google Scholar 

  27. Hong, C.K., Kim, H., Ryu, C., Nah, C., Huh, Y.I., Kaang, S.: Effects of particle size and structure of carbon blacks on the abrasion of filled elastomer compounds. J. Mater. Sci. 42, 8391–8399 (2007)

    CAS  Google Scholar 

  28. Parkins, D.: The reinforcement of rubber by carbon black. Br. J. Appl. Phys. 2, 273–280 (1951)

    Google Scholar 

  29. Rattanasoma, N., Saowapark, T., Deeprasertkul, C.: Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym. Testing 26, 369–377 (2007)

    Google Scholar 

  30. Persson, B.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840–3860 (2001)

    CAS  Google Scholar 

  31. Fukahori, Y., Yamazaki, H.: Mechanism of rubber abrasion part 3: how is friction linked to fracture in rubber abrasion? Wear 188, 19–26 (1995)

    CAS  Google Scholar 

  32. Schallamach, S.: Abrasion of rubber. Prog. Rubber Technol. 46, 107–142 (1984)

    Google Scholar 

  33. Uchiyama, Y.: Studies on the friction and wear of rubbers. Part I: influence of mechanical properties on the abrasive wear of rubbers. Int. Polym. Sci. Technol. 11, 74–80 (1984)

    Google Scholar 

  34. Kurian, J., Nando, G.B.: Scanning electron microscopy studies on wear of HDPE-filled natural rubber vulcanizates. Wear 127, 139–147 (1988)

    CAS  Google Scholar 

  35. Goodyear, C.: British Patent 2933, 16 Dec 1853; Miller, G.W.: In: Davis, C.C. (ed.) Chemistry and technology of rubber, p. 720. Reinhold Publishing Corp., New York (1937) (New York, state, United States: New York, Middle Atlantic state of the United States. It is bordered by Vermont, Massachusetts, Connecticut, and the Atlantic Ocean (E), New Jersey and Pennsylvania (S), Lakes Erie and Ontario and the Canadian province of http://encyclopedia2.thefreedictionary.com/New+York

  36. Gunasekaran, S., Natarajan, R.K., Kala, A.: FTIR spectra and mechanical strength analysis of some selected rubber derivatives. Spectrochim. Acta Part A 68, 323–330 (2007)

    CAS  Google Scholar 

  37. Fern’andez-Berridi, M., Gonz’alez, J.N., Mugica, A., Bernicot, C.: Pyrolysis-FTIR and TGA techniques as tools in the characterization of blends of natural rubber and SBR. Thermochim. Acta 444, 65–70 (2006)

    Google Scholar 

  38. Nasir, M., Choo, C.H.: Cure characteristics and mechanical properties of carbon black filled styrene-butadiene rubber and epoxidized natural rubber blends. Polym. J. 25, 355–359 (1989)

    CAS  Google Scholar 

  39. Brinke, J.W.T., Debnath, S.C., Reuvekamp, L.A.E.M., Noordermeer, J.W.M.: Mechanistic aspects of the role of coupling agents in silica–rubber composites. Compos. Sci. Technol. 63, 1165–1174 (2003)

    Google Scholar 

  40. Tinker, A.J., Jones, K.P.: Blends of Natural Rubber, Novel Techniques for Blending with Speciality Polymer. Chapman & Hall, London (1998)

    Google Scholar 

  41. Meyer, A.W., Hampton, R.R., Davison, J.A.: Structure of alkali metal-catalyzed butadiene polymers. J. Am. Chem. Soc. 74, 2294 (1952)

    CAS  Google Scholar 

  42. Engels, H.-W., Weidenhaupt, H.-J., Pieroth, M., Hofmann, W., Menting, K.-H., Mergenhagen, T., Schmoll, R., Uhrlandt, S.: Rubber, 4. Chemicals and Additives. Ullmann’s Encyclopedia of Industrial Chemistry, Wiley (2004)

    Google Scholar 

  43. Dalton, W.O.: Rubber latex agglomeration by acid anhydride addition. J. Colloid Interface Sci. 43, 339 (1973)

    CAS  Google Scholar 

  44. Heinrich, G., Kluppel, M., Vilgis, T.A.: Reinforcement of elastomers. Curr. Opin. Solid State Mater. Sci. 6, 195–203 (2002)

    CAS  Google Scholar 

  45. Hashim, A.S., Azahari, B., Ikeda, Y., Kohjiya, S.: The effect of bis(3-triethoxysilylpropyl) tetrasulfide on silica reinforcement of styrene-butadiene rubber. Rubber Chem. Technol. 71, 289–299 (1998)

    CAS  Google Scholar 

  46. Pankratov, V.A., Zakharkin, O.A., Zakharov, N.D., Kostrykina, G.I., Zhukov, A.A.: Effect of pulverization on the molecular structure of synthetic cis-polyisoprene. Polym. Sci. U.S.S.R. 16, 1568 (1974)

    Google Scholar 

  47. Horne, S.E., Kiehl, J.P., Shipman, J.J., Folt, V.L., Gibbs, C.F., Willson, E.A., Newton, E.B., Reinhart, M.A.: Ameripol SN—A Cis-,4-Polyisoprene. Ind. Eng. Chem. 48, 784 (1956)

    CAS  Google Scholar 

  48. Huang, D.C., Lin, Y.C., Tsiang, R.C.C.: Synthesis of SBS thermoplastic block copolymers in cyclohexane in the presence of diethylether used as a structure modifier. J. Polym. Res. 2(2), 91–98 (1995)

    CAS  Google Scholar 

  49. Portal, J., Carrot, C., Majeste, J.C., Cocard, S., Pelissier,V., Anselme-Bertrand, I.: Quantification of the distribution of carbon black in natural rubber/polybutadiene blends by differential scanning calorimetry. Polym. Eng. Sci. 49, 1544 (2009)

    CAS  Google Scholar 

  50. Garvey, B.S.: Elastomers. Materials of construction review. Ind. Eng. Chem. 53(10), 856–859 (1961)

    CAS  Google Scholar 

  51. Sturrock, A.T., Sarbach, D.V.: Antioxidants for cis-polybutadiene compounds. Rubber Age 92, 723 (1963)

    CAS  Google Scholar 

  52. Arroyo, M., Lopez-Manchadoa, M.A., Valentina, J.L., Carretero, J.: Morphology/behaviour relationship of nanocomposites based on natural rubber/epoxidized natural rubber blends. Compos. Sci. Technol. 67, 1330–1339 (2007)

    CAS  Google Scholar 

  53. Das, T.: Speciality polymer blends of high performance thermoplastics and elastomers with liquid crystalline polymers. Ph.D. Dissertation, IIT Kharagpur, India (2007)

    Google Scholar 

  54. Nielsen, L.E.: Mechanical Properties of Polymer and Composites. Marcel Dekker, New York (1975)

    Google Scholar 

  55. Ahmed, S., Jones, F.R.: A review of particulate reinforcement theories for polymer composites. J. Mater. Sci. 25, 4933 (1990)

    CAS  Google Scholar 

  56. Nakamae, K., Nishino, T., Xu, A.R., Matsumoto, T., Miyamoto, T.: Studies on mechanical properties of polymer composites by X-ray diffraction. I. Residual stress in epoxy resin by X-ray diffraction. J. Appl. Polym. Sci. 40, 2231 (1990)

    CAS  Google Scholar 

  57. Black, W.B.: High-modulus wholly aromatic fibers: introduction to the symposium and historical perspective. J. Macromol. Sci. Chem. A7, 3 (1973)

    Google Scholar 

  58. Morgan, P.W.: Synthesis and properties of aromatic and extended chain polyamides. Macromolecules 10, 1381 (1977). doi:abs/10.1021/ma60060a040

    CAS  Google Scholar 

  59. Wei, K.H., Ho, J.C.: A study on blends of liquid crystalline copolyesters with polycarbonate. III. Mechanical properties of compatibilized blends. J. Appl. Polym. Sci. 63, 1527 (1997)

    CAS  Google Scholar 

  60. Park, D.S., Kim, S.H.: Miscibility study on blend of thermotropic liquid crystalline polymers and polyester. J. Appl. Polym. Sci. 87, 1842 (2003)

    CAS  Google Scholar 

  61. Auer, C., Kalinka, G., Krause, T., Hinrichsen, G.: Crystallization kinetics of pure and fiber-reinforced poly(phenylene sulfide). J. Appl. Polym. Sci. 51, 407 (1994)

    CAS  Google Scholar 

  62. Liu, J., Tang, G., Qg, U., Zhou, H., Guo, Q.: Crystallization of rare earth oxide-filled polypropylene. J. Appl. Polym. Sci. 47, 2111 (1993)

    CAS  Google Scholar 

  63. Phillips, R., Manson, J.E.: Prediction and analysis of nonisothermal crystallization of polymers. J. Polym. Sci. B Polym. Phys. 35, 875 (1997)

    CAS  Google Scholar 

  64. Nasir, M., Choo, C.H.: Chemical modification of natural rubber latex with peracetic acid. Polymer 25, 355 (1989)

    CAS  Google Scholar 

  65. Tinker, A.J., Jones, K.P.: Blends of Natural Rubber, Novel Techniques for Blending with Speciality Polymers. Chapman & Hall, London (1998)

    Google Scholar 

  66. Choi, S.S., Nah, C., Lee, S.G., Joo, C.W.: Effect of filler–filler interaction on rheological behaviour of natural rubber compounds filled with both carbon black and silica. Polym. Int. 52, 23 (2002)

    Google Scholar 

  67. Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R Rep. 28, 1–63 (2000)

    Google Scholar 

  68. Giannelis, E.P., Krishnamoorti, R., Manias, E.: Polymer-silicate nanocomposites: model systems for confined polymer and polymer brushes. Adv. Polym. Sci. 138, 107 (1999)

    CAS  Google Scholar 

  69. Arroyo, M., Lopez-Manchado, M.A., Herrero, B.: Organo-montmorrilonite as substitute of carbon black for natural rubber compounds. Polymer 44, 2447 (2003)

    CAS  Google Scholar 

  70. Vaia, R.A., Giannelis, E.P.: Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem. Mater. 5, 1694 (1993)

    CAS  Google Scholar 

  71. Vaia, R.A., Jandt, K.D., Kramer, E.J., Giannelis, E.P.: Kinetics of polymer melt intercalation. Macromolecules 28, 8080 (1995)

    CAS  Google Scholar 

  72. Hackett, E., Manias, E., Giannelis, E.P.: Computer simulation studies of PEO/layer silicate nanocomposites. Chem. Mater. 12, 2161 (2000)

    CAS  Google Scholar 

  73. Bujdak, J., Hackett, E., Giannelis, E.P.: Effect of layer charge on the intercalation of poly(ethylene oxide) in layered silicates: implications on nanocomposite polymer electrolytes. Chem. Mater. 12, 2168 (2000)

    CAS  Google Scholar 

  74. Burnside, S.D., Giannelis, E.P.: Synthesis and properties of new poly(dimethylsiloxane) nanocomposites. Chem. Mater. 7, 1597 (1995)

    CAS  Google Scholar 

  75. Joly, S., Garnaud, G., Ollitrault, R., Bokobza, L., Mark, J.E.: Organically modified layered silicates as reinforcing fillers for natural rubber. Chem. Mater. 14, 4202 (2002)

    CAS  Google Scholar 

  76. Zhang, Z., Zhang, L., Li, Y., Xu, H.: New fabricate of styrene–butadiene rubber/montmorillonite nanocomposites by anionic polymerization. Polymer 46, 129 (2005)

    CAS  Google Scholar 

  77. Karger-Kocsis, J., Zhang, Z.: Mechanical Properties of Polymers Based on Nanostructure and Morphology, p. 547. CRC Press, New York (2005)

    Google Scholar 

  78. Reichert, P., Nitz, H., Klinke, S., Brandsch, R., Thomann, R., Mulhaupt, R.: Poly(propylene)/organoclay nanocomposite formation: influence of compatibilizer functionality and organoclay modification. Macromol. Mater. Eng. 275, 8 (2000)

    CAS  Google Scholar 

  79. Teh, P.L., Mohd Ishak, Z.A., Hashim, A.S., Karger-Kocsis, J., Ishiaku, U.S.: Effects of epoxidized natural rubber as a compatibilizer in melt compounded natural rubber–organoclay nanocomposites. Eur. Polym. J. 40, 2513 (2004)

    CAS  Google Scholar 

  80. Varghese, S., Karger-Kocsis, J., Gatos, K.G.: Melt compounded epoxidized natural rubber/layered silicate nanocomposites: structure-properties relationships. Polymer 44, 3977 (2003)

    CAS  Google Scholar 

  81. Pal, K., Rajasekar, R., Kang, D.J., Zhang, Z.X., Kim, J.K., Das, C.K.: Effect of epoxidized natural rubber–organoclay nanocomposites on NR/high styrene rubber blends with fillers. Mater. Des. 30(10), 4035–4042 (2009)

    CAS  Google Scholar 

  82. Rajasekar, R., Pal, K., Heinrich, G., Das, A., Das, C.K.: Development of nitrile butadiene rubber–nanoclay composites with epoxidized natural rubber as compatibilizer. Mater. Des. 30(9), 3839–3845 (2009)

    CAS  Google Scholar 

  83. Zilg, C., Thomann, R., Mülhaupt, R., Finter, J.: Polyurethane nanocomposites containing laminated anisotropic nanoparticles derived from organophilic layered silicates. Adv. Mater. 11, 49 (1999)

    CAS  Google Scholar 

  84. Ganter, M., Reichert, P.: Rubber nanocomposites: morphology and mechanical properties of BR and SBR vulcanizates reinforced by organophilic layered silicates. Rubber Chem. Technol. 74, 221 (2001)

    CAS  Google Scholar 

  85. Zhang, L., Wang, Y., Wang, Y., Sui, Y., Yu, D.: Morphology and mechanical properties of clay/styrene-butadiene rubber nanocomposites. J. Appl. Polym. Sci. 78, 1873 (2000)

    CAS  Google Scholar 

  86. Schallamach, A.: In: Bateman, L. (ed.) Chemistry and Physics of Rubber-Like Substances. Maclaren and Sons Ltd., London, Chapter 3, p. 382 (1963)

    Google Scholar 

  87. Grosch, K.A., Schallamach, A.: Tire friction on wet roads. Rubber Chem. Technol. 49, 862 (1976)

    CAS  Google Scholar 

  88. Pal, K., Pal, S.K., Das, C.K., Kim, J.K.: Influence of fillers on NR/SBR/XNBR blends. Morphology and wear. Tribol. Int. 43(8), 1542–1550 (2010)

    CAS  Google Scholar 

  89. Thomas, A.G.: Factors influencing the strength of rubbers. J. Polym. Sci. Polym. Symp. 48, 145 (1974)

    CAS  Google Scholar 

  90. Kragelskii, I.V., Nepomnyashchil, E.F. In: James, D.I. (ed.) Abrasion of Rubber. Maclern and Sons Ltd., London, Chapter 3 (1967)

    Google Scholar 

  91. Schallamach, A.: A theory of dynamic rubber friction. Wear 6(5), 375 (1963)

    Google Scholar 

  92. Nayek, S., Bhowmick, A.K., Pal, S.K., Chandra, A.K.: Wear behavior of silica filled tire tread compounds by various rock surfaces. Rubber Chem. Technol. 78, 705 (2005)

    CAS  Google Scholar 

  93. Kragelskii, I.V., Nepomnyashchil, E.F.: In: James, D.I. (ed.) Abrasion of Rubber. Maclern and Sons Ltd., London, Chapter 3 (1967)

    Google Scholar 

  94. Schnumann, R., Warlow-Davies, E.: The elastomeric component of the force of sliding friction. Proc. Phys. Soc. 54(1), 14–27 (1942)

    Google Scholar 

  95. Pal, K.: Speciality elastomer blends for abrasion resistant tyre tread of dump-trucks. Ph.D Thesis, IIT Kharagpur, India (2009)

    Google Scholar 

  96. Bhowmick, A.K.: Ridge formation during the abrasion of elastomers. Rubber Chem. Technol. 55, 1055 (1979)

    Google Scholar 

  97. Southern, E., Thomas, A.: Studies of rubber abrasion. Rubber Chem. Technol. 52, 1008 (1979)

    Google Scholar 

  98. Medalia, A.I., Alesi, A.I., Mead, J.L., Simonean, R.: Paper no. 34, Rubber Division, ACS, Cincinnati, Ohio, October, 18–21, 1988; abstract in Rubber Chem Technol 62, 165 (1989)

    Google Scholar 

  99. Viswanath, N., Bellow, D.G.: Development of an equation for the wear of polymers. Wear 181–183, 42 (1995)

    Google Scholar 

  100. Rymuza, Z.: Wear in polymer micro-pairs. Proceedings of 3rd international conference on wear of materials 125 (1981)

    Google Scholar 

  101. Ratner, S.B.: Connection between the wear resistance of plastics and other mechanical properties. Sov. Plast. 7, 37 (1964)

    Google Scholar 

  102. Lewis, R.B.: Predicting the wear of sliding plastic surfaces. Mech. Eng. 86, 32 (1964)

    CAS  Google Scholar 

  103. Rhee, S.K.: Wear equation for polymers sliding against metal surfaces. Wear 16, 431 (1970)

    Google Scholar 

  104. Lancaster, J.K.: Friction and wear. In: Jenkins, A.D. (ed.) Polymer Sciences. North-Holland Publishing Co., Amsterdam, Chapter 14 (1972)

    Google Scholar 

  105. Atkinson, J.R., Brown, K.J., Dowson, D.: The wear of high molecular weight polyethylene: part I: the wear of isotropic polyethylene against dry stainless steel in unidirectional motion. Trans. ASME J. Lubr. Technol. 100, 208 (1978)

    CAS  Google Scholar 

  106. Schallmach, A.: Abrasion pattern on rubber. Rubber Chem. Technol. 26, 230 (1953)

    Google Scholar 

  107. Kragelsky, I.V., Nepomnyashchil, E.F.: Friction wear of polymers. Khimiya 5 (1964)

    Google Scholar 

  108. Klitenik, G.S., Ratner, S.B.: Friction wear of polymers. Khimiya 77 (1964)

    Google Scholar 

  109. Brodsky, G.I.: Comprehensive evaluation of cord-to-rubber adhesion. Rubber World 190(5), 29–39 (1984)

    CAS  Google Scholar 

  110. Brodsky, G.I., Reznikovsky, M.M., Sizikov, N.N.: Rezina konstruktsionnyi material sovremennogo machinostroeniya. Khimiya 118 (1967)

    Google Scholar 

  111. Reznikovskii, M.M.: In: James, D.I. (ed.) Abrasion of Rubber. Maclaren, London, p. 41 (1967)

    Google Scholar 

  112. Rudakov, A., Kuvshinskii, E.: The mechanism of abrasion of vulcanized rubber. Rubber Chem. Technol. 37, 291 (1964)

    Google Scholar 

  113. Pal, K., Das, T., Rajasekar, R., Pal, S.K., Das, C.K.: Wear characteristics of styrene butadiene rubber/natural rubber blends with varying carbon blacks by DIN abrader and mining rock surfaces. J. Appl. Polym. Sci. 111, 348 (2009)

    CAS  Google Scholar 

  114. Dayantis, J.: The effect of pressure on the determination of the Flory-Huggins χ parameter by vapour pressure measurements. Polymer 33(1), 219–221 (1992)

    CAS  Google Scholar 

  115. Bhatnagar, S.K., Banerjee, S.: Viscosity and molecular weight of masticated styrene-butadiene rubber. Rubber Chem. Technol. 38, 961 (1965)

    CAS  Google Scholar 

  116. Ishida, H., Miller, J.D.: Substrate effects on the chemisorbed and physisorbed layers of methacryl silane-modified particulate minerals. Macromolecules 17, 1659 (1984)

    CAS  Google Scholar 

  117. Maiti, S.N., Mohapatro, P.K.: Mechanical properties of i-PP/CaCO3 composites. J. Appl. Polym. Sci. 42, 3101 (1991)

    CAS  Google Scholar 

  118. Teh PL, T.: Effects of epoxidized natural rubber as a compatibilizer in melt compounded natural rubber–organoclay nanocomposites. Eur. Polym. J. 40, 2513 (2004)

    Google Scholar 

  119. Sezna, J.A., Pawlowski, H.A., DeConinck, D.: New test results from rotorless curemeters. Proceeding of 136th meeting of the ACS-rubber division (1989)

    Google Scholar 

  120. Yehia, A.A., Ismail, M.N., Hefny, Y.A., Abdel-Bary, E.M., Mull, M.A.: Mechano-chemical reclamation of waste rubber powder and its effect on the performance of NR and SBR vulcanizates. J. Elasto Plast. 36, 109 (2004)

    CAS  Google Scholar 

  121. Manik, S.P., Banerjee, S.: Determination of chemical cross-links in rubbers. Die Angewandte Makromolekuiare Chemie 6, 171 (1979)

    Google Scholar 

  122. Zhu, L., Wool, R.P.: Nanoclay reinforced bio-based elastomers: synthesis and characterization. Polymer 47, 8106 (2006)

    CAS  Google Scholar 

  123. Rajasekar, R., Pal, K., Heinrich, G., Das, A., Das, C.K.: Development of NBR-nanoclay composites with epoxidized natural rubber as compatibilizer. Mater. Des. 30, 3839 (2009)

    CAS  Google Scholar 

  124. De, D., Maiti, S., Adhikary, B.: Reclaiming of rubber by a renewable resource material (RRM). III. Evaluation of properties of NR reclaim. J. Appl. Polym. Sci. 75, 1493 (2000)

    CAS  Google Scholar 

  125. Agag, T., Koga, T., Takeichi, T.: Studies on thermal and mechanical properties of polyimide–clay nanocomposites. Polymer 42, 3399 (2001)

    Google Scholar 

  126. Nielsen, L.E. (ed.): Mechanical Properties of Polymers and Composites. Marcel Dekker, New York, Chapter 2 (1974)

    Google Scholar 

  127. Sharifa, J., Yunus, W.M.Z.W., Dahlan, K.Z.H.M., Ahmad, M.H.: Preparation and properties of radiation crosslinked natural rubber/clay nanocomposites. Polym Test 24(2), 211–217 (2005)

    Google Scholar 

  128. Thomas, S., Kuriakose, B., Gupta, B.R., De, S.K.: Scanning electron microscopy studies on tensile, tear and abrasion failure of plasticized poly (vinyl chloride) and copolyester thermoplastic elastomers. J. Mater. Sci. 21, 711 (1986)

    CAS  Google Scholar 

  129. Maity, M., Khatua, B.B., Das, C.K.: Effect of processing on the thermal stability of the blends based on polyurethane: part IV. Polym. Degrad. Stab. 72, 499 (2000)

    Google Scholar 

  130. Gann, R.G., Dipert, R.A., Drews, M.J.: Flammability. In: Kroschwitz, J.I. (ed) Encyclopedia of Polymer Science and Engineering, 2nd edn. John Wiley & Sons, Inc., New York, 7:154–210 (1985)

    Google Scholar 

  131. Pal, K., Das, T., Pal, S.K., Das, C.K.: Use of carboxylated nitrile rubber and natural rubber blends as retreading compound for OTR tires. Polym. Eng. Sci. 48, 2410 (2008)

    CAS  Google Scholar 

  132. Siriwardena, S., Ismail, H., Ishiaku, U.S.: A comparison of white rice husk ash and silica as fillers in ethylene–propylene–diene terpolymer vulcanizates. Polym. Int. 50, 707 (2001)

    CAS  Google Scholar 

  133. Gent, A.N., Hindi, M.: Heat build-up and blowout of rubber blocks. Rubber Chem. Technol. 63, 892 (1988)

    Google Scholar 

  134. Medalia, A.I.: Heat generation in elastomer compounds: causes and effects. Rubber Chem. Technol. 64, 481–492 (1991)

    CAS  Google Scholar 

  135. Park, D.M., Hong, W.H., Kim, S.G., Kim, H.J.: Heat generation of filled rubber vulcanizates and its relationship with vulcanizate network structures. Eur. Polym. J. 36, 2429–2436 (2000)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pal, K., Pal, S.K., Das, C.K., Kim, J.K. (2011). Elastomeric Nanocomposites for Tyre Applications. In: Mittal, V., Kim, J., Pal, K. (eds) Recent Advances in Elastomeric Nanocomposites. Advanced Structured Materials, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15787-5_8

Download citation

Publish with us

Policies and ethics