Skip to main content

Friction and Wear of Rubber Nanocomposites Containing Layered Silicates and Carbon Nanotubes

  • Chapter
  • First Online:
Recent Advances in Elastomeric Nanocomposites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 9))

Abstract

This chapter gives a survey on the tribological performance of organoclay and carbon nanotube reinforced rubbers of both conventional (thermoset) and thermoplastic versions. The unlubricated friction and wear of rubbers were grouped in abrasion-, sliding- and rolling-types in order to support the overview. It was highlighted that the coefficient of friction and specific wear rate strongly depend on the configuration and testing parameters of the tribotests used. It was demonstrated that the incorporation of the above nanofillers is not always associated with improved resistance to wear and reduced coefficient of friction. Further experimental studies, data mining through proper statistical techniques, and extensive modeling works are needed to realize the potential of the above nanofillers in tribological applications, and to deduce relationships between wear and other characteristics (e.g. network-, mechanical response-related) of rubbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim, Y.A., Hayashi, T., Endo, M., Gotoh, Y., Wada, N., Seiyama, J.: Fabrication of aligned carbon nanotube-filled rubber composite. Scripta Mater. 54, 31–35 (2006)

    Article  CAS  Google Scholar 

  2. Vast, L., Philippin, G., Destrée, A., Moreau, N., Fonseca, A., Nagy, J.B., Delhalle, J., Mekhalif, Z.: Chemical functionalization by a fluorinated trichlorosilane of multi-walled carbon nanotubes. Nanotechnology 15, 781–785 (2004)

    Article  CAS  Google Scholar 

  3. Ma, P.C., Kim, J.-K., Tang, B.Z.: Functionalization of carbon nanotubes using a silane coupling agent. Carbon 44, 3232–3238 (2006)

    Article  CAS  Google Scholar 

  4. Kokaia, F., Koshioa, A., Shiraishia, M., Matsutaa, T., Shimodaa, S., Ishiharab, M., Kogab, Y., Denoc, H.: Modification of carbon nanotubes by laser ablation. Diam. Relat. Mater. 14, 724–728 (2005)

    Article  Google Scholar 

  5. Breton, Y., Delpeux, S., Benoit, R., Salvetat, J.P., Sinturel, C., Beguin, F., Bonnamy, S.: Functionalization of multiwall carbon nanotubes: properties of nanotubes-epoxy composites. Mol. Cryst. Liq. Cryst. 387, 135–140 (2002)

    Article  CAS  Google Scholar 

  6. Hill, D.E., Lin, Y., Rao, A.M., Allard, L.F., Sun, Y.-P.: Functionalization of carbon nanotubes with polystyrene. Macromolecules 35, 9466–9471 (2002)

    Article  CAS  Google Scholar 

  7. Sui, G., Zhong, W.H., Yang, X.P., Yu, Y.H.: Curing kinetics and mechanical behavior of natural rubber reinforced with pretreated carbon nanotubes. Mater. Sci. Eng. A-Struct. 485, 524–531 (2008)

    Article  Google Scholar 

  8. Sui, G., Zhong, W.H., Yang, X.P., Yu, Y.H., Zhao, S.H.: Preparation and properties of natural rubber composites reinforced with pretreated carbon nanotubes. Polym. Adv. Technol. 19, 1543–1549 (2008)

    CAS  Google Scholar 

  9. Falco, A.D., Goyanes, S., Rubiolo, G.H., Mondragon, I., Marzocca, A.: Carbon nanotubes as reinforcement of styrene–butadiene rubber. Appl. Surf. Sci. 254, 262–265 (2007)

    Article  Google Scholar 

  10. Das, A., Stöckelhuber, K.W., Jurk, R., Fritzsche, J., Klüppel, M., Heinrich, G.: Coupling activity of ionic liquids between diene elastomers and multi-walled carbon nanotubes. Carbon 47, 3313–3321 (2009)

    Article  CAS  Google Scholar 

  11. Atieh, M.A., Girun, N., Ahmadun, F.-R., Guan, C.T., Mahdi, E.-S., Baik, D.R.: Multi-wall carbon nanotubes/natural rubber nanocomposite. J. Nanotechnol. Online (2005). doi:10.2240/azonjo0106

  12. Luo, Y., Wang, C., Li, Z.: Preparation, fabrication and response behavior of HTBN/TDI/MWCNT composite sensing film by in situ dispersed polymerization. Synth. Met. 157, 390–400 (2007)

    Article  CAS  Google Scholar 

  13. Bokobza, L., Kolodziej, M.: On the use of carbon nanotubes as reinforcing fillers for elastomeric materials. Polym. Int. 55, 1090–1098 (2006)

    Article  CAS  Google Scholar 

  14. Bokobza, L., Belin, C.: Effect of strain on the properties of a styrene–butadiene rubber filled with multiwall carbon nanotubes. J. Appl. Polym. Sci. 105, 2054–2061 (2007)

    Article  CAS  Google Scholar 

  15. Faulkner, R.W., Mumby, K.J., Fisherm A., Jozokos, T., Zhou, S.: Multiwall carbon nanotube reinforcement of HNBR and FKM. http://rethink-technologies.com/static/Hyperion_Fibrils_in_FKM_and_HNBR_ACS_Presentation-KM_001e.pdf. (2009)

  16. Fritzsche, J., Lorenz, H., Klüppel, M.: CNT based elastomer-hybrid-nanocomposites with promising mechanical and electrical properties. Macromol. Mater. Eng. 294, 551–560 (2009)

    Article  CAS  Google Scholar 

  17. Bokobza, L., Rhamani, M., Belin, C., Bruneel, J.-C., Bounia, N.-E.E.: Blends of carbon blacks and multiwall carbon nanotubes as reinforcing fillers for hydrocarbon rubbers. J. Polym. Sci. Pol. Phys. 46, 1939–1951 (2008)

    Article  CAS  Google Scholar 

  18. Zhu, J., Kim, J.D., Peng, H., Margrave, J.L., Khabashesku, V.N., Barrera, E.V.: Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano. Lett. 3, 1107–1113 (2003)

    Article  CAS  Google Scholar 

  19. Jung, Y.C., Sahoo, N.G., Cho, J.W.: Polymeric nanocomposites of polyurethane block copolymers and functionalized multi-walled carbon nanotubes as crosslinkers. Macromol. Rapid Comm. 27, 126–131 (2006)

    Article  CAS  Google Scholar 

  20. Xia, H., Song, M.: Preparation and characterisation of polyurethane grafted single-walled carbon nanotubes and derived polyurethane nanocomposites. J. Mater. Chem. 16, 1843–1851 (2006)

    Article  CAS  Google Scholar 

  21. Coleman, J.N., Cadek, M., Blake, R., Nicolsi, V., Ryan, K.P., Belton, C., Fonseca, A., Nagy, J.B., Gun’ko, Y.K., Blau, W.J.: High-performance nanotube-reinforced plastics: understanding the mechanism of strength increase. Adv. Funct. Mater. 14, 791–798 (2004)

    Article  CAS  Google Scholar 

  22. Claes, M., Duoin, G., Luizi, F.: Latest developments in carbon nanotubes based nanocomposites. Rubber World 239, 28–34 (2009)

    CAS  Google Scholar 

  23. Sato, Y., Hasegawa, K., Nodasaka, Y., Motomiya, K., Namura, M., Ito, N., Jeyadevan, B., Tohji, K.: Reinforcement of rubber using single-walled nanotube soot and its shock dampening properties. Carbon 46, 1506–1517 (2008)

    Article  Google Scholar 

  24. Bokobza, L.: Multiwall carbon nanotube elastomeric composites: A review. Polymer 48, 4907–4920 (2007)

    Article  CAS  Google Scholar 

  25. Bhattacharyya, S., Sinturel, C., Bahloul, O., Saboungi, M.-L., Thomas, S., Salvetat, J.-P.: Improving reinforcement of natural rubber by networking of activated carbon nanotubes. Carbon 46, 1037–1045 (2008)

    Article  CAS  Google Scholar 

  26. López-Manchado, M.A., Biagiotti, J., Valentini, L., Kenny, J.M.: Dynamic mechanical and Raman spectroscopy studies on interaction between single-walled carbon nanotubes and natural rubber. J. Appl. Polym. Sci. 92, 3394–3400 (2004)

    Article  Google Scholar 

  27. Lu, L., Zhou, Z., Zhang, Y., Wang, S., Zhang, Y.: Reinforcement of styrene–butadiene-styrene tri-block copolymer by multi-walled carbon nanotubes via melt mixing. Carbon 45, 2621–2627 (2007)

    Article  CAS  Google Scholar 

  28. Lu, L., Zhai, Y., Zhang, Y., Ong, C., Guo, S.: Reinforcement of hydrogenated nitrile-butadiene rubber by multi-walled carbon nanotubes. Appl. Surf. Sci. 255, 2162–2166 (2008)

    Article  CAS  Google Scholar 

  29. Valentini, L., Biagiotti, J., Kenny, J.M., Manchado, M.A.L.: Physical and mechanical behavior of single-walled carbon nanotube/polypropylene/ethylene-propylene-diene rubber nanocomposites. J. Appl. Polym. Sci. 89, 2657–2663 (2003)

    Article  CAS  Google Scholar 

  30. Karger-Kocsis, J., Felhös, D., Thomann, R.: Tribological behavior of a carbon-nanofiber-modified Santoprene thermoplastic elastomer under dry sliding and fretting conditions against steel. J. Appl. Polym. Sci. 108, 724–730 (2008)

    Article  CAS  Google Scholar 

  31. Perez, L.D., Zuluaga, M.A., Kyu, T., Mark, J.E., Lopez, B.L.: Preparation, characterization, and physical properties of multiwall carbon nanotube/elastomers composites. Polym. Eng. Sci. 49, 866–874 (2009)

    Article  CAS  Google Scholar 

  32. Byres, J.T.: Fillers for balancing passenger tire tread properties. Rubber Chem. Technol. 75, 527–547 (2002)

    Google Scholar 

  33. Paglicawan, M.A., Kim, J.K., Bang, D.-S.: Dispersion of multiwalled carbon nanotubes in thermoplastic elastomer gels: morphological, rheological, and electrical properties. Polym. Compos. 31, 210–217 (2009)

    Article  Google Scholar 

  34. Meincke, O., Kaempfer, D., Weickmann, H., Friedrich, C., Vathauer, M., Warth, H.: Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45, 739–748 (2007)

    Article  Google Scholar 

  35. Li, Q., Xue, Q.Z., Gao, X.L., Zheng, Q.B.: Temperature dependence of the electrical properties of the carbon nanotube/polymer composites. Exp. Polym. Lett. 3, 769–777 (2009)

    Article  CAS  Google Scholar 

  36. Pötschke, P., Dudkin, S.M., Alig, I.: Dielectric spectroscopy on melt processed polycarbonate multiwalled carbon nanotube composites. Polymer 44, 5023–5030 (2003)

    Article  Google Scholar 

  37. Elsworth, M.W.: Organoclay-polymer composites. US Patent, 5962553, 1999

    Google Scholar 

  38. Chattopadhyay, D.K., Mishra, A.K., Sreedhar, B., Raju, K.V.S.N.: Thermal and viscoelastic properties of polyurethane-imide/clay hybrid coatings. Polym. Deg. Stab. 91, 1837–1849 (2006)

    Article  CAS  Google Scholar 

  39. Yusoh, K., Jin, J., Song, M.: Subsurface mechanical properties of polyurethane/organoclay nanocomposite thin films studied by nanoindentation. Prog. Org. Coat. 67, 220–224 (2010)

    Article  CAS  Google Scholar 

  40. Choi, W.J., Kim, S.H., Kim, Y.J., Kim, S.C.: Synthesis of a chain-extended organifier and properties of polyurethane/clay nanocomposites. Polymer 45, 6045–6057 (2004)

    Article  CAS  Google Scholar 

  41. Gatos, K.G., Karger-Kocsis, J.: Effects of primary and quarternary intercalants on the organoclay dispersion in a sulfur-cured EPDM rubber. Polymer 46, 3069–3076 (2005)

    Article  CAS  Google Scholar 

  42. Wang, S., Zhang, Y., Ren, W., Zhang, Y., Lin, H.: Morphology, mechanical and optical properties of transparent BR/clay nanocomposites. Polym. Test. 24, 766–774 (2005)

    Article  CAS  Google Scholar 

  43. Pal, K., Rajasekar, R., Kang, D.J., Zhang, Z.X., Kim, J.K., Das, C.K.: Effect of epoxidized natural rubber-organoclay nanocomposites on NR/high styrene rubber blends with fillers. Mater. Design 30, 4035–4042 (2009)

    Article  CAS  Google Scholar 

  44. Sharif, J., Yunus, W.M.Z.W., Dahlan, K.Z.H.M., Ahmad, M.H.: Preparation and properties of radiation crosslinked natural rubber/clay nanocomposites. Polym. Test. 24, 211–217 (2005)

    Article  CAS  Google Scholar 

  45. Carretero-González, J., Valentín, J.-L., Arroyo, M., Saalwächter, K., Lopez-Manchado, M.A.: Natural rubber/clay nanocomposites: Influence of poly(ethylene glycol) on the silicate dispersion and local chain order network. Eur. Polym. J. 44, 3493–3500 (2008)

    Article  Google Scholar 

  46. Yang, I.-K., Tsai, P.-H.: Intercalation and viscoelasticity of poly(ether-block-amide) copolymer/montmorillonite nanocomposites: Effect of surfactant. Polymer 47, 5131–5140 (2006)

    Article  CAS  Google Scholar 

  47. Wang, X.-P., Huang, A.-M., Jia, D.-M., Li, Y.-M.: From exfoliation to intercalation-changes in morphology of HNBR/organoclay nanocomposites. Eur. Polym. J. 44, 2784–2789 (2008)

    Article  CAS  Google Scholar 

  48. Lim, S.-H., Dasari, A., Yu, Z.-Z., Mai, Y.-W., Liu, S., Yong, M.S.: Fracture toughness of nylon 6/organoclay/elastomers nanocomposites. Compos. Sci. Technol. 67, 2914–2923 (2007)

    Article  CAS  Google Scholar 

  49. Sun, T., Dong, X., Du, K., Wang, K., Fu, Q., Han, C.C.: Structural and thermal stabilization of isotactic polypropylene/organoclay/montmorillonite/poly(ethylene-co-octene) nanocomposites by an elastomer component. Polymer 49, 588–598 (2008)

    Article  CAS  Google Scholar 

  50. Chiu, F.-C., Lai, S.-M., Chen, Y.-L., Lee, T.-H.: Investigation of the polyamide 6/organoclay nanocomposites with or without a maleated polyolefin elastomers as a toughener. Polymer 46, 11600–11609 (2005)

    Article  CAS  Google Scholar 

  51. Kim, B.K., Seo, J.W., Jeong, H.M.: Morphology and properties of waterborne polyurethane/clay nanocomposites. Eur. Polym. J. 39, 85–91 (2003)

    Article  CAS  Google Scholar 

  52. Zhu, L., Wool, R.P.: Nanoclay reinforced bio-based elastomers: synthesis and characterization. Polymer 47, 8106–8115 (2006)

    Article  CAS  Google Scholar 

  53. Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 28, 1–63 (2000)

    Article  Google Scholar 

  54. Beyer, G.: Flame retardancy of nanocomposites based on organoclays and carbon nanotubes with aluminium trihydrate. Polym. Adv. Technol. 17, 218–225 (2006)

    Article  CAS  Google Scholar 

  55. Frounchia, M., Dadbinb, S., Salehpoura, Z., Noferestia, M.: Gas barrier properties of PP/EPDM blend nanocomposites. J. Memb. Sci. 282, 142–148 (2006)

    Article  Google Scholar 

  56. Thompson, M.R., Yeung, K.K.: Recyclability of a layered silicate-thermoplastic olefin elastomers nanocomposite. Polym. Deg. Stab. 91, 2396–2407 (2006)

    Article  CAS  Google Scholar 

  57. Chung, J.W., Han, S.J., Kwak, S.-Y.: Application of strain-time correspondence as a tool for structural analysis of acrylonitrile–butadiene copolymer nanocomposites with various organoclay loadings. Eur. Polym. J. 45, 79–87 (2009)

    Article  CAS  Google Scholar 

  58. Ramorino, G., Bignotti, F., Pandini, S., Riccó, T.: Mechanical reinforcement in natural rubber/organoclay nanocomposites. Compos. Sci. Technol. 69, 1206–1211 (2009)

    Article  CAS  Google Scholar 

  59. TABER® Rotary Platform Abraser: http://www.taberindustries.com/Products/abraser/index.asp?ct=1&sc=1

  60. Jacobs, O., Jaskulkaa, R., Yangb, F., Wub, W.: Sliding wear of epoxy compounds against different counterparts under dry and aqueous conditions. Wear 256, 9–15 (2004)

    Article  CAS  Google Scholar 

  61. Jacobs, O., Xu, W., Schädel, B., Wu, W.: Wear behaviour of carbon nanotube reinforced epoxy resin composites. Tribol. Lett. 23, 65–75 (2006)

    Article  CAS  Google Scholar 

  62. Felhös, D., Karger-Kocsis, J., Xu, D.: Tribological testing of peroxide cured HNBR with different MWCNT and silica contents under dry sliding and rolling conditions against steel. J. Appl. Polym. Sci. 108, 2840–2851 (2008)

    Article  Google Scholar 

  63. El-Tayeb, N.S.M., RMd, Nasir: Effect of soft carbon black on tribology of deproteinised and polyisoprene rubbers. Wear 262, 350–361 (2007)

    Article  CAS  Google Scholar 

  64. Karger-Kocsis, J., Mousa, A., Major, Z., Békési, N.: Dry friction and sliding wear of EPDM rubbers against steel as a function of carbon black content. Wear 264, 357–365 (2008)

    Google Scholar 

  65. Schallamach, A.: Friction and abrasion of rubber. Wear 1, 384–417 (1958)

    Article  Google Scholar 

  66. Schallamach, A.: How does rubber slide? Wear 17, 301–3012 (1971)

    Article  Google Scholar 

  67. Xu, D., Karger-Kocsis, J.: Dry rolling and sliding friction and wear of organophilic layered silicate/hydrogenated nitrile rubber nanocomposite. J. Mater. Sci. 45, 1293–1298 (2010)

    Article  Google Scholar 

  68. Gatos, K.G., Kameo, K., Karger-Kocsis, J.: On the friction and sliding wear of rubber/layered silicate nanocomposites. Exp. Polym. Lett. 1, 27–31 (2007)

    Article  CAS  Google Scholar 

  69. Karger-Kocsis, J., Felhös, D., Xu, D., Schlarb, A.K.: Unlubricted sliding and rolling wear of thermoplastic dynamic vulcanizates (Santoprene®) against steel. Wear 265, 292–300 (2008)

    Article  CAS  Google Scholar 

  70. Greenwood, J.A., Tabor, D.: Deformation properties of friction junctions. Proc. Phys. Soc. Lond. B 68, 609–619 (1955)

    Article  Google Scholar 

  71. Greenwood, J.A., Tabor, D.: The friction of hard sliders on lubricated rubber: the importance of deformation losses. Proc. Phys. Soc. 71, 989–1001 (1958)

    Article  Google Scholar 

  72. Greenwood, J.A., Minshall, H., Tabor, D.: Hysteresis losses in rolling and sliding friction. Proc. Phys. Soc. Lon. A Math. Phys. Sci 259, 480–507 (1961)

    Article  Google Scholar 

  73. Tabor, D.: The mechanism of rolling friction. 2. The elastic range. Proc. Phys. Soc. Lon. A Math. Phys. Sci 229, 198–220 (1955)

    Article  Google Scholar 

  74. Evans, I.: The rolling resistance of a wheel with a solid rubber tyre. Br. J. Appl. Phys. 5, 187–188 (1954)

    Article  Google Scholar 

  75. May, W.D., Morris, E.L., Atack, D.: Rolling friction of a hard cylinder over a viscoelastic material. J. Appl. Phys. 30, 1713–1724 (1959)

    Article  Google Scholar 

  76. Flom, D.G., Bueche, A.M.: Theory of rolling friction for spheres. J. Appl. Phys. 30, 1725–1730 (1959)

    Article  Google Scholar 

  77. Gent, A.N., Henry, R.L.: Rolling friction on viscoelastic substrates. T. Soc. Rheol. 13, 255–271 (1969)

    Article  Google Scholar 

  78. Zaghzi, N., Carre, A., Shanahan, M.E.R., Papirer, E., Schultz, J.: A study of spontaneous rubber/metal adhesion. I. The rolling cylinder test. J. Polym. Sci. B Polym. Phys. 25, 2393–2402 (1987)

    Article  CAS  Google Scholar 

  79. Chernyak, Y.B., Leonov, A.I.: On the theory of the adhesive friction of elastomers. Wear 108, 105–138 (1986)

    Article  CAS  Google Scholar 

  80. Glaeser, W.A.: Wear debris classification. In: Bhushan, B. (ed.) Modern Tribology Handbook, vol. 1. CRC Press, Boca Raton (2001)

    Google Scholar 

  81. Xu, D., Karger-Kocsis, J., Schlarb, A.K.: Rolling wear of EPDM and SBR rubbers as a function of carbon black contents: correlation with microhardness. J. Mater. Sci. 43, 4330–4339 (2008)

    Article  CAS  Google Scholar 

  82. Felhös, D., Karger-Kocsis, J.: Tribological testing of peroxide-cured EPDM rubbers with different carbon black contents under dry sliding conditions against steel. Tribol. Int. 41, 404–415 (2008)

    Article  Google Scholar 

  83. Xu, D., Karger-Kocsis, J., Schlarb, A.K.: Friction and wear of HNBR with different fillers under dry sliding and rolling conditions. Exp. Polym. Lett. 3, 126–136 (2009)

    Article  CAS  Google Scholar 

  84. Xu, D., Karger-Kocsis, J., Major, Z., Thomann, R.: Unlubricated rolling wear of HNBR/FKM/MWCNT compounds against steel. J. Appl. Polym. Sci. 112, 1461–1470 (2009)

    Article  CAS  Google Scholar 

  85. Xu, D., Karger-Kocsis, J., Schlarb, A.K.: Rolling friction and wear of organoclay-modified thermoplastic polyurethane rubbers against steel. Kaut. Gummi. Kunstst. 61, 98–106 (2008)

    Google Scholar 

Download references

Acknowledgments

Dr. Dávid Felhös is very thankful to Mr. György Szabó and his family their selfless and friendly advocacy to take a fresh start in Miskolc. The authors express their thanks to Dr. Dan Xu for the performed tests and for the results presented in Sects. 2.3.1 and 2.3.2 and to Dr. Kálmán Marossy for the preparation of the TPU and TPO based nanocomposites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Felhös .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Felhös, D., Karger-Kocsis, J. (2011). Friction and Wear of Rubber Nanocomposites Containing Layered Silicates and Carbon Nanotubes. In: Mittal, V., Kim, J., Pal, K. (eds) Recent Advances in Elastomeric Nanocomposites. Advanced Structured Materials, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15787-5_13

Download citation

Publish with us

Policies and ethics