Skip to main content

On the Number of Spanning Trees a Planar Graph Can Have

  • Conference paper
Book cover Algorithms – ESA 2010 (ESA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6346))

Included in the following conference series:

Abstract

We prove that any planar graph on n vertices has less than O(5.2852n) spanning trees. Under the restriction that the planar graph is 3-connected and contains no triangle and no quadrilateral the number of its spanning trees is less than O(2.7156n). As a consequence of the latter the grid size needed to realize a 3d polytope with integer coordinates can be bounded by O(147.7n). Our observations imply improved upper bounds for related quantities: the number of cycle-free graphs in a planar graph is bounded by O(6.4884n), the number of plane spanning trees on a set of n points in the plane is bounded by O(158.6n), and the number of plane cycle-free graphs on a set of n points in the plane is bounded by O(194.7n).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aichholzer, O., Hackl, T., Huemer, C., Hurtado, F., Krasser, H., Vogtenhuber, B.: On the number of plane geometric graphs. Graph. Comb. 23(1), 67–84 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bacher, R., de la Harpe, P., Nagnibeda, T.: The lattice of integral flows and the lattice of integral cuts on a finite graph. Bull. Soc. Math. de France 125, 167–198 (1997)

    MATH  Google Scholar 

  3. Biggs, N.: Algebraic potential theory on graphs. Bull. London Math. Soc. 29, 641–682 (1997)

    Article  MathSciNet  Google Scholar 

  4. Biggs, N.: Chip-firing and the critical group of a graph. J. Algebraic Combin. 9, 25–46 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Buchin, K., Knauer, C., Kriegel, K., Schulz, A., Seidel, R.: On the number of cycles in planar graphs. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 97–107. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  7. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

    Google Scholar 

  8. Grone, R., Merris, R.: A bound for the complexity of a simple graph. Discrete Mathematics 69(1), 97–99 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  10. Lyons, R.: Asymptotic enumeration of spanning trees. Combinatorics, Probability & Computing 14(4), 491–522 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. McKay, B.D.: Spanning trees in regular graphs. Euro. J. Combinatorics 4, 149–160 (1983)

    MATH  MathSciNet  Google Scholar 

  12. Ribó Mor, A.: Realization and Counting Problems for Planar Structures: Trees and Linkages, Polytopes and Polyominoes. PhD thesis, Freie Universität Berlin (2006)

    Google Scholar 

  13. Ribó Mor, A., Rote, G., Schulz, A.: Embedding 3-polytopes on a small grid. In: Erickson, J. (ed.) Symposium on Computational Geometry, pp. 112–118. ACM, New York (2007)

    Google Scholar 

  14. Richter-Gebert, J.: Realization Spaces of Polytopes. Lecture Notes in Mathematics, vol. 1643. Springer, Heidelberg (1996)

    Google Scholar 

  15. Rote, G.: The number of spanning trees in a planar graph. In: Oberwolfach Reports, vol. 2, European Mathematical Society, Publishing House (2005)

    Google Scholar 

  16. Sharir, M., Sheffer, A.: Counting triangulations of planar point sets (2010) (manuscript)

    Google Scholar 

  17. Steinitz, E.: Encyclopädie der mathematischen Wissenschaften. In: Polyeder und Raumteilungen, pp. 1–139 (1922)

    Google Scholar 

  18. Suen, S.: A correlation inequality and a poisson limit theorem for nonoverlapping balanced subgraphs of a random graph. Random Struct. Algorithms 1(2), 231–242 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Tutte, W.T.: Convex representations of graphs. Proceedings London Mathematical Society 10(38), 304–320 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tutte, W.T.: How to draw a graph. Proceedings London Mathematical Society 13(52), 743–768 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  21. Whitney, H.: A set of topological invariants for graphs. Amer. J. Math. 55, 235–321 (1933)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buchin, K., Schulz, A. (2010). On the Number of Spanning Trees a Planar Graph Can Have. In: de Berg, M., Meyer, U. (eds) Algorithms – ESA 2010. ESA 2010. Lecture Notes in Computer Science, vol 6346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15775-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15775-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15774-5

  • Online ISBN: 978-3-642-15775-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics