Skip to main content

Concurrent Computing and Shellable Complexes

  • Conference paper
Distributed Computing (DISC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6343))

Included in the following conference series:

Abstract

Roughly speaking, a simplicial complex is shellable if it can be constructed by gluing a sequence of n-simplexes to one another along (n − 1)-faces only. Shellable complexes have been studied in the combinatorial topology literature because they have many nice properties.

It turns out that many standard models of concurrent computation can be captured either as shellable complexes, or as the simple union of shellable complexes. We consider general adversaries in the synchronous, asynchronous, and semi-synchronous message-passing models, as well as asynchronous shared memory augmented by consensus and set agreement objects.

We show how to exploit their common shellability structure to derive new and remarkably succinct tight (or nearly so) lower bounds on connectivity of protocol complexes and hence on solutions to the k-set agreement task in these models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attiya, H., Dwork, C., Lynch, N., Stockmeyer, L.: Bounds on the time to reach agreement in the presence of timing uncertainty. J. ACM 41(1), 122–152 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Björner, A.: Shellable and Cohen-Macaulay partially ordered sets. Transactions of the American Mathematical Society 260(1), 159–183 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  3. Björner, A.: Topological methods, pp. 1819–1872. MIT Press, Cambridge (1995)

    Google Scholar 

  4. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asynchronous computations. In: STOC ’93: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, pp. 91–100. ACM, New York (1993)

    Chapter  Google Scholar 

  5. Borowsky, E., Gafni, E.: A simple algorithmically reasoned characterization of wait-free computations (extended abstract). In: PODC ’97: Proceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed Computing, pp. 189–198. ACM, New York (1997)

    Chapter  Google Scholar 

  6. Borowsky, E., Gafni, E., Lynch, N., Rajsbaum, S.: The BG distributed simulation algorithm. Distributed Computing 14(3), 127–146 (2001)

    Article  Google Scholar 

  7. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Tielmann, A.: The disagreement power of an adversary: extended abstract. In: Proceedings of the 28th ACM Symposium on Principles of Distributed Computing, pp. 288–289. ACM, New York (2009)

    Chapter  Google Scholar 

  8. Gafni, E., Rajsbaum, S.: Distributed programming with tasks. Technical Report 100001, UCLA Computer Science Department, Los Angeles, CA, USA, november (2009)

    Google Scholar 

  9. Herlihy, M., Rajsbaum, S.: Set consensus using arbitrary objects (preliminary version). In: PODC ’94: Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed Computing, pp. 324–333. ACM, New York (1994)

    Chapter  Google Scholar 

  10. Herlihy, M., Rajsbaum, S.: Algebraic spans. Mathematical Structures in Computer Science 10(4), 549–573 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Herlihy, M., Rajsbaum, S.: The topology of shared-memory adversaries. In: PODC ’10: Proceedings of the Fourteenth Annual ACM Symposium on Principles of Distributed Computing (to appear, 2010)

    Google Scholar 

  12. Herlihy, M., Rajsbaum, S., Tuttle, M.: An axiomatic approach to computing the connectivity of synchronous and asynchronous systems. Electron. Notes Theor. Comput. Sci. 230, 79–102 (2009)

    Article  Google Scholar 

  13. Herlihy, M., Rajsbaum, S., Tuttle, M.R.: Unifying synchronous and asynchronous message-passing models. In: PODC ’98: Proceedings of the Seventeenth Annual ACM Symposium on Principles of Distributed Computing, pp. 133–142. ACM, New York (1998)

    Chapter  Google Scholar 

  14. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability. J. ACM 46(6), 858–923 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Junqueira, F., Marzullo, K.: Designing algorithms for dependent process failures. In: Future Directions in Distributed Computing, pp. 24–28 (2003)

    Google Scholar 

  16. Kozlov, D.: Combinatorial Algebraic Topology. Springer, Heidelberg (2007)

    Google Scholar 

  17. Moses, Y., Rajsbaum, S.: A layered analysis of consensus. SIAM J. Computing 31(4), 989–1021 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: The topology of public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herlihy, M., Rajsbaum, S. (2010). Concurrent Computing and Shellable Complexes. In: Lynch, N.A., Shvartsman, A.A. (eds) Distributed Computing. DISC 2010. Lecture Notes in Computer Science, vol 6343. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15763-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15763-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15762-2

  • Online ISBN: 978-3-642-15763-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics