Skip to main content

Cardiovascular Complications of Cancer Therapeutics

  • Chapter
  • First Online:
Book cover Pulmonary Involvement in Patients with Hematological Malignancies

Abstract

Cardiovascular disease represents a significant cause of morbidity and mortality in cancer patients and cancer survivors. This chapter covers the cardiovascular toxicities as a result of drugs used in the treatment of cancer. Complications seen with such treatment regimens can include cardiomyopathy, arrhythmias, myocardial infarction, thromboembolism, and hypertension. We specifically review the incidence of cardiotoxicities associated with each drug, as well as the patient risk factors, manifestation of disease, and where applicable insights into the mechanism of cardiovascular damage. We also discuss specific strategies for reducing the incidence and severity of cardiovascular complications associated with cancer therapeutics. In addition, we discuss the opportunity for discovery afforded by cardiovascular complications that arise in patients developing cardiotoxicities associated with novel, molecularly targeted cancer therapeutics. Studying the mechanisms of such toxicities may have the dual benefit of devising strategies to eliminate cardiovascular disease as a barrier to effective therapy and also may provide insights into molecular pathways that are critical in the regulation of the human cardiovascular system whose identities were previously unappreciated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simůnek T, Stérba M, Popelová O, Adamcová M, Hrdina R, Gersl V (2009) Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep 61:154–171

    PubMed  Google Scholar 

  2. Menna P, Minotti G, Salvatorelli E (2007) In vitro modeling of the structure-activity determinants of anthracycline cardiotoxicity. Cell Biol Toxicol 23:49–62

    PubMed  CAS  Google Scholar 

  3. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229

    PubMed  CAS  Google Scholar 

  4. Carver JR, Shapiro CL, Ng A et al (2007) American Society of Clinical Oncology clinical evidence review on the ongoing care of adult cancer survivors: cardiac and pulmonary late effects. J Clin Oncol 25:3991–4008

    PubMed  CAS  Google Scholar 

  5. Sereno M, Brunello A, Chiappori A et al (2008) Cardiac toxicity: old and new issues in anti-cancer drugs. Clin Transl Oncol 10:35–46

    PubMed  CAS  Google Scholar 

  6. Jannazzo A, Hoffman J, Lutz M (2008) Monitoring of anthracycline-induced cardiotoxicity. Ann Pharmacother 42:99–104

    PubMed  CAS  Google Scholar 

  7. Miller KD, Triano LR (2008) Medical issues in cancer survivors – a review. Cancer J 14:375–387

    PubMed  Google Scholar 

  8. Kremer LC, van Dalen EC, Offringa M, Ottenkamp J, Voûte PA (2001) Anthracycline-induced clinical heart failure in a cohort of 607 children: long-term follow-up study. J Clin Oncol 19:191–196

    PubMed  CAS  Google Scholar 

  9. Kremer LC, Caron HN (2004) Anthracycline cardiotoxicity in children. N Engl J Med 351:120–121

    PubMed  CAS  Google Scholar 

  10. Wojnowski L, Kulle B, Schirmer M et al (2005) NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation 112:3754–3762

    PubMed  CAS  Google Scholar 

  11. Deng S, Wojnowski L (2007) Genotyping the risk of anthracycline-induced cardiotoxicity. Cardiovasc Toxicol 7: 129–134

    PubMed  CAS  Google Scholar 

  12. Singal P, Li T, Kumar D, Danelisen I, Iliskovic N (2000) Adriamycin-induced heart failure: mechanisms and modulation. Mol Cell Biochem 207:77–86

    PubMed  CAS  Google Scholar 

  13. Delpy E, Hatem SN, Andrieu N et al (1999) Doxorubicin induces slow ceramide accumulation and late apoptosis in cultured adult rat ventricular myocytes. Cardiovasc Res 43:398–407

    PubMed  CAS  Google Scholar 

  14. Singal PK, Panagia V (1984) Direct effects of adriamycin on the rat heart sarcolemma. Res Commun Chem Pathol Pharmacol 43:67–77

    PubMed  CAS  Google Scholar 

  15. Shan YX, Liu TJ, Su HF, Samsamshariat A, Mestril R, Wang PH (2003) Hsp10 and Hsp60 modulate Bcl-2 family and mitochondria apoptosis signaling induced by doxorubicin in cardiac muscle cells. J Mol Cell Cardiol 35:1135–1143

    PubMed  CAS  Google Scholar 

  16. Green PS, Leeuwenburgh C (2002) Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis. Biochim Biophys Acta 1588:94–101

    PubMed  CAS  Google Scholar 

  17. Lim CC, Zuppinger C, Guo X et al (2004) Anthracyclines induce calpain-dependent titin proteolysis and necrosis in cardiomyocytes. J Biol Chem 279:8290–8299

    PubMed  CAS  Google Scholar 

  18. Olson RD, Mushlin PS, Brenner DE et al (1988) Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol. Proc Natl Acad Sci USA 85:3585–3589

    PubMed  CAS  Google Scholar 

  19. Charlier HA Jr, Olson RD, Thornock CM et al (2005) Investigations of calsequestrin as a target for anthracyclines: comparison of functional effects of daunorubicin, daunorubicinol, and trifluoperazine. Mol Pharmacol 67:1505–1512

    PubMed  CAS  Google Scholar 

  20. Olson RD, Li X, Palade P et al (2000) Sarcoplasmic reticulum calcium release is stimulated and inhibited by daunorubicin and daunorubicinol. Toxicol Appl Pharmacol 169: 168–176

    PubMed  CAS  Google Scholar 

  21. Salvatorelli E, Guarnieri S, Menna P et al (2006) Defective one- or two-electron reduction of the anticancer anthracycline epirubicin in human heart. Relative importance of vesicular sequestration and impaired efficiency of electron addition. J Biol Chem 281:10990–11001

    PubMed  CAS  Google Scholar 

  22. Giordano SH, Booser DJ, Murray JL et al (2002) A detailed evaluation of cardiac toxicity: a phase II study of doxorubicin and one- or three-hour-infusion paclitaxel in patients with metastatic breast cancer. Clin Cancer Res 8: 3360–3368

    PubMed  CAS  Google Scholar 

  23. Valero V, Perez E, Dieras V (2001) Doxorubicin and taxane combination regimens for metastatic breast cancer: focus on cardiac effects. Semin Oncol 28:15–23

    PubMed  CAS  Google Scholar 

  24. Ewer MS, Gibbs HR, Swafford J, Benjamin RS (1999) Cardiotoxicity in patients receiving transtuzumab (Herceptin): primary toxicity, synergistic or sequential stress, or surveillance artifact? Semin Oncol 26:96–101

    PubMed  CAS  Google Scholar 

  25. Levine MN (2005) Trastuzumab cardiac side effects: only time will tell. J Clin Oncol 23:7775

    PubMed  CAS  Google Scholar 

  26. Tan-Chiu E, Yothers G, Romond E et al (2005) Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. J Clin Oncol 23:7811–7819

    PubMed  CAS  Google Scholar 

  27. Schneider JW, Chang AY, Rocco TP (2001) Cardiotoxicity in signal transduction therapeutics: erbB2 antibodies and the heart. Semin Oncol 28:18–26

    PubMed  CAS  Google Scholar 

  28. de Korte MA, de Vries EG, Lub-de Hooge MN et al (2007) 111Indium-trastuzumab visualises myocardial human epidermal growth factor receptor 2 expression shortly after anthracycline treatment but not during heart failure: a clue to uncover the mechanisms of trastuzumab-related cardiotoxicity. Eur J Cancer 43:2046–2051

    PubMed  Google Scholar 

  29. Menna P, Salvatorelli E, Minotti G (2007) Doxorubicin degradation in cardiomyocytes. J Pharmacol Exp Ther 322: 408–419

    PubMed  CAS  Google Scholar 

  30. Legha SS, Benjamin RS, Mackay B et al (1982) Reduction of doxorubicin cardiotoxicity by prolonged continuous intravenous infusion. Ann Intern Med 96:133–139

    PubMed  CAS  Google Scholar 

  31. Lipshultz SE, Giantris AL, Lipsitz SR et al (2002) Doxorubicin administration by continuous infusion is not cardioprotective: the Dana-Farber 91-01 Acute Lymphoblastic Leukemia protocol. J Clin Oncol 20: 1677–1682

    PubMed  CAS  Google Scholar 

  32. Coukell AJ, Epirubicin FD (1997) An updated review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in the management of breast cancer. Drugs 53:453–482

    PubMed  CAS  Google Scholar 

  33. Nair R, Ramakrishnan G, Nair NN et al (1998) A randomized comparison of the efficacy and toxicity of epirubicin and doxorubicin in the treatment of patients with non-Hodgkin’s lymphoma. Cancer 82:2282–2288

    PubMed  CAS  Google Scholar 

  34. van Dalen EC, Michiels EMC, Caron HN, Kremer LCM (2006) Different anthracycline derivates for reducing cardiotoxicity in cancer patients. Cochrane Database Syst Rev CD005006

    Google Scholar 

  35. O’Brien ME, Wigler N, Inbar M et al (2004) Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 15:440–449

    PubMed  Google Scholar 

  36. Safra T (2003) Cardiac safety of liposomal anthracyclines. Oncologist 8(Suppl 2):17–24

    PubMed  CAS  Google Scholar 

  37. Lebrecht D, Geist A, Ketelsen U-P, Haberstroh J, Setzer B, Walker UA (2007) Dexrazoxane prevents doxorubicin-induced long-term cardiotoxicity and protects myocardial mitochondria from genetic and functional lesions in rats. Br J Pharmacol 151:771–778

    PubMed  CAS  Google Scholar 

  38. Hasinoff BB, Herman EH (2007) Dexrazoxane: how it works in cardiac and tumor cells. Is it a prodrug or is it a drug? Cardiovasc Toxicol 7:140–144

    PubMed  CAS  Google Scholar 

  39. Speyer JL, Green MD, Zeleniuch-Jacquotte A et al (1992) ICRF-187 permits longer treatment with doxorubicin in women with breast cancer. J Clin Oncol 10:117–127

    PubMed  CAS  Google Scholar 

  40. van Dalen EC, Caron HN, Dickinson HO, Kremer LC (2005) Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. CD003917

    Google Scholar 

  41. Swain SM, Whaley FS, Gerber MC et al (1997) Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol 15:1318–1332

    PubMed  CAS  Google Scholar 

  42. Cheng J, Kamiya K, Kodama I (2001) Carvedilol: molecular and cellular basis for its multifaceted therapeutic potential. Cardiovasc Drug Rev 19:152–171

    PubMed  CAS  Google Scholar 

  43. Spallarossa P, Garibaldi S, Altieri P et al (2004) Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol 37: 837–846

    PubMed  CAS  Google Scholar 

  44. Matsui H, Morishima I, Numaguchi Y, Toki Y, Okumura K, Hayakawa T (1999) Protective effects of carvedilol against doxorubicin-induced cardiomyopathy in rats. Life Sci 65:1265–1274

    PubMed  CAS  Google Scholar 

  45. Kalay N, Basar E, Ozdogru I et al (2006) Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol 48:2258–2262

    PubMed  CAS  Google Scholar 

  46. Cardinale D, Colombo A, Sandri MT et al (2006) Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation 114:2474–2481

    PubMed  CAS  Google Scholar 

  47. Vaynblat M, Shah HR, Bhaskaran D et al (2002) Simultaneous angiotensin converting enzyme inhibition moderates ventricular dysfunction caused by doxorubicin. Eur J Heart Fail 4:583–586

    PubMed  CAS  Google Scholar 

  48. Sacco G, Bigioni M, Evangelista S, Goso C, Manzini S, Maggi CA (2001) Cardioprotective effects of zofenopril, a new angiotensin-converting enzyme inhibitor, on doxorubicin-induced cardiotoxicity in the rat. Eur J Pharmacol 414:71–78

    PubMed  CAS  Google Scholar 

  49. Hunt SA, Abraham WT, Chin MH et al (2005) ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation 112:e154–e235

    PubMed  Google Scholar 

  50. El-Demerdash E, Ali AA, Sayed-Ahmed MM, Osman A-MM (2003) New aspects in probucol cardioprotection against doxorubicin-induced cardiotoxicity. Cancer Chemother Pharmacol 52:411–416

    PubMed  Google Scholar 

  51. Hydock DS, Lien C-Y, Schneider CM, Hayward R (2008) Exercise preconditioning protects against doxorubicin-induced cardiac dysfunction. Med Sci Sports Exerc 40:808–817

    PubMed  CAS  Google Scholar 

  52. Mitra MS, Donthamsetty S, White B, Mehendale HM (2008) High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity. Toxicol Appl Pharmacol 231:413–422

    PubMed  CAS  Google Scholar 

  53. Kluza J, Marchetti P, Gallego M-A et al (2004) Mitochondrial proliferation during apoptosis induced by anticancer agents: effects of doxorubicin and mitoxantrone on cancer and cardiac cells. Oncogene 23:7018–7030

    PubMed  CAS  Google Scholar 

  54. Floyd JD, Nguyen DT, Lobins RL, Bashir Q, Doll DC, Perry MC (2005) Cardiotoxicity of cancer therapy. J Clin Oncol 23:7685–7696

    PubMed  CAS  Google Scholar 

  55. van Dalen EC, van der Pal HJH, Bakker PJM, Caron HN, Kremer LCM (2004) Cumulative incidence and risk factors of mitoxantrone-induced cardiotoxicity in children: a systematic review. Eur J Cancer 40:643–652

    PubMed  Google Scholar 

  56. Henderson IC, Allegra JC, Woodcock T et al (1989) Randomized clinical trial comparing mitoxantrone with doxorubicin in previously treated patients with metastatic breast cancer. J Clin Oncol 7:560

    PubMed  CAS  Google Scholar 

  57. Avilés A, Neri N, Nambo JM, Huerta-Guzman J, Talavera A, Cleto S (2005) Late cardiac toxicity secondary to treatment in Hodgkin’s disease. A study comparing doxorubicin, epirubicin and mitoxantrone in combined therapy. Leuk Lymphoma 46:1023–1028

    PubMed  Google Scholar 

  58. Wang GX, Zhou XB, Eschenhagen T, Korth M (1999) Effects of mitoxantrone on action potential and membrane currents in isolated cardiac myocytes. Br J Pharmacol 127:321–330

    PubMed  CAS  Google Scholar 

  59. Chugun A, Uchide T, Tsurimaki C et al (2008) Mechanisms responsible for reduced cardiotoxicity of mitoxantrone compared to doxorubicin examined in isolated guinea-pig heart preparations. J Vet Med Sci 70:255–264

    PubMed  CAS  Google Scholar 

  60. Chintalgattu V, Patel SS, Khakoo AY (2009) Cardiovascular effects of tyrosine kinase inhibitors used for gastrointestinal stromal tumors. Hematol Oncol Clin North Am 23:97–107, viii-ix

    PubMed  Google Scholar 

  61. Force T, Krause DS, Van Etten RA (2007) Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer 7:332–344

    PubMed  CAS  Google Scholar 

  62. Hudis CA (2007) Trastuzumab–mechanism of action and use in clinical practice. N Engl J Med 357:39–51

    PubMed  CAS  Google Scholar 

  63. Chien KR (2006) Herceptin and the heart – a molecular modifier of cardiac failure. N Engl J Med 354:789–790

    PubMed  CAS  Google Scholar 

  64. Ewer MS, Vooletich MT, Durand J-B et al (2005) Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol 23:7820–7826

    PubMed  CAS  Google Scholar 

  65. Hayes DF, Picard MH (2006) Heart of darkness: the downside of trastuzumab. J Clin Oncol 24(25):4056–4059

    PubMed  CAS  Google Scholar 

  66. Perez EA (2008) Cardiac toxicity of ErbB2-targeted therapies: what do we know? Clin Breast Cancer 8(Suppl 3):S114–S120

    PubMed  CAS  Google Scholar 

  67. Jerian S, Keegan P, Perez EA (1999) Cardiotoxicity associated with paclitaxel/trastuzumab combination therapy. J Clin Oncol 17:1644e

    Google Scholar 

  68. Pentassuglia L, Graf M, Lane H et al (2009) Inhibition of ErbB2 by receptor tyrosine kinase inhibitors causes myofibrillar structural damage without cell death in adult rat cardiomyocytes. Exp Cell Res 315:1302–1312

    PubMed  CAS  Google Scholar 

  69. Ozcelik C, Erdmann B, Pilz B et al (2002) Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy. Proc Natl Acad Sci USA 99:8880–8885

    PubMed  CAS  Google Scholar 

  70. Schneider JW, Chang AY, Garratt A (2002) Trastuzumab cardiotoxicity: speculations regarding pathophysiology and targets for further study. Semin Oncol 29:22–28

    PubMed  CAS  Google Scholar 

  71. Guarneri V, Lenihan DJ, Valero V et al (2006) Long-term cardiac tolerability of trastuzumab in metastatic breast cancer: the M.D. Anderson Cancer Center experience. J Clin Oncol 24:4107–4115

    PubMed  CAS  Google Scholar 

  72. Perez EA, Koehler M, Byrne J, Preston AJ, Rappold E, Ewer MS (2008) Cardiac safety of lapatinib: pooled analysis of 3689 patients enrolled in clinical trials. Mayo Clin Proc 83:679–686

    PubMed  Google Scholar 

  73. Kerkelä R, Grazette L, Yacobi R et al (2006) Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med 12:908–916

    PubMed  Google Scholar 

  74. Fernandez A, Sanguino A, Peng Z et al (2007) An anticancer C-Kit kinase inhibitor is reengineered to make it more active and less cardiotoxic. J Clin Invest 117:4044–4054

    PubMed  CAS  Google Scholar 

  75. Atallah E, Durand J-B, Kantarjian H, Cortes J (2007) Congestive heart failure is a rare event in patients receiving imatinib therapy. Blood 110:1233–1237

    PubMed  CAS  Google Scholar 

  76. Trent JC, Patel SS, Zhang J et al (2009) Rare incidence of congestive heart failure in gastrointestinal stromal tumor and other sarcoma patients receiving imatinib mesylate. Cancer 116(184):192

    Google Scholar 

  77. Kantarjian HM, Giles F, Gattermann N et al (2007) Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood 110:3540–3546

    PubMed  CAS  Google Scholar 

  78. Wong S-F (2009) New dosing schedules of dasatinib for CML and adverse event management. J Haematol Oncol 2:10

    CAS  Google Scholar 

  79. Hazarika M, Jiang X, Liu Q et al (2008) Tasigna for chronic and accelerated phase Philadelphia chromosome–positive chronic myelogenous leukemia resistant to or intolerant of imatinib. Clin Cancer Res 14:5325–5331

    PubMed  CAS  Google Scholar 

  80. Quintas-Cardama A, Kantarjian H, O’Brien S et al (2007) Pleural effusion in patients with chronic myelogenous leukemia treated with dasatinib after imatinib failure. J Clin Oncol 25:3908–3914

    PubMed  CAS  Google Scholar 

  81. de Lavallade H, Punnialingam S, Milojkovic D et al (2008) Pleural effusions in patients with chronic myeloid leukaemia treated with dasatinib may have an immune-mediated pathogenesis. Br J Haematol 141:745–747

    PubMed  Google Scholar 

  82. Hasinoff BB, Patel D, O’Hara KA (2008) Mechanisms of myocyte cytotoxicity induced by the multiple receptor tyrosine kinase inhibitor sunitinib. Mol Pharmacol 74:1722–1728

    PubMed  CAS  Google Scholar 

  83. Rock EP, Goodman V, Jiang JX et al (2007) Food and Drug Administration drug approval summary: sunitinib malate for the treatment of gastrointestinal stromal tumor and advanced renal cell carcinoma. Oncologist 12:107–113

    PubMed  CAS  Google Scholar 

  84. Abrams TJ, Murray LJ, Pesenti E et al (2003) Preclinical evaluation of the tyrosine kinase inhibitor SU11248 as a single agent and in combination with “standard of care” therapeutic agents for the treatment of breast cancer. Mol Cancer Ther 2:1011–1021

    PubMed  CAS  Google Scholar 

  85. Chu TF, Rupnick MA, Kerkela R et al (2007) Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet 370:2011–2019

    PubMed  CAS  Google Scholar 

  86. Di Lorenzo G, Autorino R, Bruni G, et al (2009) Cardiovascular toxicity following sunitinib therapy in metastatic renal cell carcinoma: a multicenter analysis. Ann Oncol. doi:10.1093/annonc/mdp025

    Google Scholar 

  87. Khakoo AY, Kassiotis CM, Tannir N et al (2008) Heart failure associated with sunitinib malate: a multitargeted receptor tyrosine kinase inhibitor. Cancer 112:2500–2508

    PubMed  CAS  Google Scholar 

  88. Khakoo AY, Halushka MK, Rame JE, Rodriguez ER, Kasper EK, Judge DP (2005) Reversible cardiomyopathy caused by administration of interferon alpha. Nat Clin Pract Cardiovasc Med 2:53–57

    PubMed  Google Scholar 

  89. Machiels JP, Bletard N, Pirenne P, Jacquet L, Bonbled F, Duck L (2008) Acute cardiac failure after sunitinib. Ann Oncol. doi:10.1093/annonc/mdn019

    Google Scholar 

  90. Klein M, Schermuly RT, Ellinghaus P et al (2008) Combined tyrosine and serine/threonine kinase inhibition by sorafenib prevents progression of experimental pulmonary hypertension and myocardial remodeling. Circulation 118:2081–2090

    PubMed  CAS  Google Scholar 

  91. Veronese ML, Mosenkis A, Flaherty KT et al (2006) Mechanisms of hypertension associated with BAY 43-9006. J Clin Oncol 24:1363–1369

    PubMed  CAS  Google Scholar 

  92. Will Y, Dykens JA, Nadanaciva S et al (2008) Effect of the multitargeted tyrosine kinase inhibitors imatinib, dasatinib, sunitinib, and sorafenib on mitochondrial function in isolated rat heart mitochondria and H9c2 cells. Toxicol Sci 106:153–161

    PubMed  CAS  Google Scholar 

  93. Mego M, Reckova M, Obertova J, Sycova-Mila Z, Brozmanova K, Mardiak J (2007) Increased cardiotoxicity of sorafenib in sunitinib-pretreated patients with metastatic renal cell carcinoma. Ann Oncol 18:1906

    PubMed  CAS  Google Scholar 

  94. Schmidinger M, Zielinski CC, Vogl UM et al (2008) Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol 26:5204–5212

    PubMed  Google Scholar 

  95. Daher IN, Yeh ETH (2008) Vascular complications of selected cancer therapies. Nat Clin Pract Cardiovasc Med 5:797–805

    PubMed  CAS  Google Scholar 

  96. Gressett SM, Shah SR (2009) Intricacies of bevacizumab-induced toxicities and their management. Ann Pharmacother 43:490–501

    PubMed  CAS  Google Scholar 

  97. Roth DB, King A, Weiss M, Klein D (2009) Systemic adverse events after bevacizumab. Ophthalmology 116:1226, e1

    PubMed  Google Scholar 

  98. Hospitalaria F, Hosp F (2007) Insuficiencia cardiaca grave por bevacizumab en paciente tratado con antraciclinas. Farm Hosp 31:251–259

    Google Scholar 

  99. Kamba T, McDonald DM (2007) Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br J Cancer 96:1788–1795

    PubMed  CAS  Google Scholar 

  100. Alinari L, Lapalombella R, Andritsos L, Baiocchi RA, Lin TS, Byrd JC (2007) Alemtuzumab (Campath-1H) in the treatment of chronic lymphocytic leukemia. Oncogene 26:3644–3653

    PubMed  CAS  Google Scholar 

  101. Lenihan DJ, Alencar AJ, Yang D, Kurzrock R, Keating MJ, Duvic M (2004) Cardiac toxicity of alemtuzumab in patients with mycosis fungoides/Sézary syndrome. Blood 104:655–658

    PubMed  CAS  Google Scholar 

  102. Lundin J, Kennedy B, Dearden C, Dyer MJS, Osterborg A (2005) No cardiac toxicity associated with alemtuzumab therapy for mycosis fungoides/Sézary syndrome. Blood 105:4148–4149

    PubMed  CAS  Google Scholar 

  103. Yeh ETH (2006) Cardiotoxicity induced by chemotherapy and antibody therapy. Annu Rev Med 57:485–498

    PubMed  CAS  Google Scholar 

  104. Dalzell JR, Samuel LM (2009) The spectrum of 5-fluorouracil cardiotoxicity. Anticancer Drugs 20:79

    PubMed  CAS  Google Scholar 

  105. de Forni M, Malet-Martino MC, Jaillais P et al (1992) Cardiotoxicity of high-dose continuous infusion fluorouracil: a prospective clinical study. J Clin Oncol 10:1795–1801

    PubMed  Google Scholar 

  106. Tsavaris N, Kosmas C, Vadiaka M et al (2002) Cardiotoxicity following different doses and schedules of 5-fluorouracil administration for malignancy – a survey of 427 patients. Med Sci Monit 8:PI51–PI57

    PubMed  CAS  Google Scholar 

  107. Labianca R, Beretta G, Clerici M, Fraschini P, Luporini G. Cardiac toxicity of 5-fluorouracil: a study on 1083 patients (1982) Tumori 68:505–510

    Google Scholar 

  108. Kosmas C, Kallistratos MS, Kopterides P et al (2007) Cardiotoxicity of fluoropyrimidines in different schedules of administration: a prospective study. J Cancer Res Clin Oncol 134(1):75–82

    PubMed  Google Scholar 

  109. Mosseri M, Fingert HJ, Varticovski L, Chokshi S, Isner JM (1993) In vitro evidence that myocardial ischemia resulting from 5-fluorouracil chemotherapy is due to protein kinase C-mediated vasoconstriction of vascular smooth muscle. Cancer Res 53:3028–3033

    PubMed  CAS  Google Scholar 

  110. Zver S, Zadnik V, Bunc M, Rogel P, Cernelc P, Kozelj M (2007) Cardiac toxicity of high-dose cyclophosphamide in patients with multiple myeloma undergoing autologous hematopoietic stem cell transplantation. Int J Hematol 85:408–414

    PubMed  CAS  Google Scholar 

  111. Gottdiener JS, Appelbaum FR, Ferrans VJ, Deisseroth A, Ziegler J (1981) Cardiotoxicity associated with high-dose cyclophosphamide therapy. Arch Intern Med 141:758–763

    PubMed  CAS  Google Scholar 

  112. Quezado ZM, Wilson WH, Cunnion RE et al (1993) High-dose ifosfamide is associated with severe, reversible cardiac dysfunction. Ann Intern Med 118:31–36

    PubMed  CAS  Google Scholar 

  113. Tiersten A, Wo J, Jacobson C et al (2004) Cardiac toxicity observed in association with high-dose cyclophosphamide-based chemotherapy for metastatic breast cancer. Breast 13:341–346

    PubMed  Google Scholar 

  114. Taniguchi I (2005) Clinical significance of cyclophosphamide-induced cardiotoxicity. Internal Med 44:89–90 (Tokyo 1992)

    Google Scholar 

  115. Kamezaki K, Fukuda T, Makino S, Harada M (2005) Cyclophosphamide-induced cardiomyopathy in a patient with seminoma and a history of mediastinal irradiation. Intern Med 44:120–123

    PubMed  Google Scholar 

  116. Berliner S, Rahima M, Sidi Y et al (1990) Acute coronary events following cisplatin-based chemotherapy. Cancer Invest 8:583–586

    PubMed  CAS  Google Scholar 

  117. Doll DC, List AF, Greco FA, Hainsworth JD, Hande KR, Johnson DH (1986) Acute vascular ischemic events after cisplatin-based combination chemotherapy for germ-cell tumors of the testis. Ann Intern Med 105:48–51

    PubMed  CAS  Google Scholar 

  118. Içli F, Karaoğuz H, Dinçol D et al (1993) Severe vascular toxicity associated with cisplatin-based chemotherapy. Cancer 72:587–593

    PubMed  Google Scholar 

  119. Czaykowski PM, Moore MJ, Tannock IF (1998) High risk of vascular events in patients with urothelial transitional cell carcinoma treated with cisplatin based chemotherapy. J Urol 160:2021–2024

    PubMed  CAS  Google Scholar 

  120. Anders JC, Grigsby PW, Singh AK (2006) Cisplatin chemotherapy (without erythropoietin) and risk of life-threatening thromboembolic events in carcinoma of the uterine cervix: the tip of the iceberg? A review of the literature. Radiat Oncol 1:14

    PubMed  Google Scholar 

  121. Chaudhary UB, Haldas JR (2003) Long-term complications of chemotherapy for germ cell tumours. Drugs 63:1565–1577

    PubMed  CAS  Google Scholar 

  122. Berger CC, Bokemeyer C, Schneider M, Kuczyk MA, Schmoll HJ (1995) Secondary Raynaud’s phenomenon and other late vascular complications following chemotherapy for testicular cancer. Eur J Cancer 31A:2229–2238

    PubMed  CAS  Google Scholar 

  123. Vogelzang NJ, Bosl GJ, Johnson K, Kennedy BJ (1981) Raynaud’s phenomenon: a common toxicity after combination chemotherapy for testicular cancer. Ann Intern Med 95:288–292

    PubMed  CAS  Google Scholar 

  124. Bachmeyer C, Joly H, Jorest R (2000) Early myocardial infarction during chemotherapy for testicular cancer. Tumori 86:428–430

    PubMed  CAS  Google Scholar 

  125. Stefenelli T, Kuzmits R, Ulrich W, Glogar D (1988) Acute vascular toxicity after combination chemotherapy with cisplatin, vinblastine, and bleomycin for testicular cancer. Eur Heart J 9:552–556

    PubMed  CAS  Google Scholar 

  126. van den Belt-Dusebout AW, Nuver J, de Wit R et al (2006) Long-term risk of cardiovascular disease in 5-year survivors of testicular cancer. J Clin Oncol 24:467–475

    PubMed  Google Scholar 

  127. Weijl NI, Rutten MFJ, Zwinderman AH et al (2000) Thromboembolic events during chemotherapy for germ cell cancer: a cohort study and review of the literature. J Clin Oncol 18:2169

    PubMed  CAS  Google Scholar 

  128. White DA, Schwartzberg LS, Kris MG, Bosl GJ (1987) Acute chest pain syndrome during bleomycin infusions. Cancer 59:1582–1585

    PubMed  CAS  Google Scholar 

  129. Ben Yosef R, Gez E, Catane R (1990) Acute pericarditis following bleomycin: a case report and literature analysis. J Chemother 2:70–71

    PubMed  CAS  Google Scholar 

  130. Schwarzer S, Eber B, Greinix H, Lind P (1991) Non-Q-wave myocardial infarction associated with bleomycin and etoposide chemotherapy. Eur Heart J 12:748–750

    PubMed  CAS  Google Scholar 

  131. Shah MA, Ilson D, Kelsen DP (2005) Thromboembolic events in gastric cancer: high incidence in patients receiving irinotecan- and bevacizumab-based therapy. J Clin Oncol 23:2574–2576

    PubMed  Google Scholar 

  132. Gähler A, Hitz F, Hess U, Cerny T (2003) Acute pericarditis and pleural effusion complicating cytarabine chemotherapy. Onkologie 26:348–350

    PubMed  Google Scholar 

  133. Hermans C, Straetmans N, Michaux JL, Ferrant A (1997) Pericarditis induced by high-dose cytosine arabinoside chemotherapy. Ann Hematol 75:55–57

    PubMed  CAS  Google Scholar 

  134. Vaickus L, Letendre L (1984) Pericarditis induced by high-dose cytarabine therapy. Arch Intern Med 144: 1868–1869

    PubMed  CAS  Google Scholar 

  135. Reykdal S, Sham R, Kouides P (1995) Cytarabine-induced pericarditis: a case report and review of the literature of the cardio-pulmonary complications of cytarabine therapy. Leuk Res 19:141–144

    PubMed  CAS  Google Scholar 

  136. Santini D, Tonini G, Abbate A et al (2000) Gemcitabine-induced atrial fibrillation: a hitherto unreported manifestation of drug toxicity. Ann Oncol 11:479–481

    PubMed  CAS  Google Scholar 

  137. Bdair FM, Graham SP, Smith PF, Javle MM (2006) Gemcitabine and acute myocardial infarction – a case report. Angiology 57:367–371

    PubMed  Google Scholar 

  138. Kalapura T, Krishnamurthy M, Reddy CV (1999) Acute myocardial infarction following gemcitabine therapy – a case report. Angiology 50:1021–1025

    PubMed  CAS  Google Scholar 

  139. Tavil Y, Arslan U, Okyay K, Sen N, Boyaci B (2007) Atrial fibrillation induced by gemcitabine treatment in a 65-year-old man. Onkologie 30:253–255

    PubMed  Google Scholar 

  140. Ferrari D, Carbone C, Codecà C et al (2006) Gemcitabine and atrial fibrillation: a rare manifestation of chemotherapy toxicity. Anticancer Drugs 17:359–361

    PubMed  CAS  Google Scholar 

  141. Chatterjee K, Zhang J, Honbo N, Simonis U, Shaw R, Karliner JS (2007) Acute vincristine pretreatment protects adult mouse cardiac myocytes from oxidative stress. J Mol Cell Cardiol 43:327–336

    PubMed  CAS  Google Scholar 

  142. Khakoo AY, Yeh ETH (2008) Therapy insight: management of cardiovascular disease in patients with cancer and cardiac complications of cancer therapy. Nat Clin Pract Oncol 5:655–667

    PubMed  CAS  Google Scholar 

  143. Bergeron A, Raffy O, Vannetzel JM (1995) Myocardial ischemia and infarction associated with vinorelbine. J Clin Oncol 13:531–532

    PubMed  CAS  Google Scholar 

  144. Karminsky N, Merimsky O, Kovner F, Inbar M (1999) Vinorelbine-related acute cardiopulmonary toxicity. Cancer Chemother Pharmacol 43:180–182

    PubMed  CAS  Google Scholar 

  145. Lapeyre-Mestre M, Gregoire N, Bugat R, Montastruc JL (2004) Vinorelbine-related cardiac events: a meta-analysis of randomized clinical trials. Fundam Clin Pharmacol 18:97–105

    PubMed  CAS  Google Scholar 

  146. Rowinsky EK, McGuire WP, Guarnieri T, Fisherman JS, Christian MC, Donehower RC (1991) Cardiac disturbances during the administration of taxol. J Clin Oncol 9:1704–1712

    PubMed  CAS  Google Scholar 

  147. Calvo-Romero JM, Fernández-Soria-Pantoja R, Arrebola-Garcia JD, Gil-Cubero M (2001) Ischemic heart disease associated with vincristine and doxorubicin chemotherapy. Ann Pharmacother 35:1403–1405

    PubMed  CAS  Google Scholar 

  148. Chatterjee K, Zhang J, Tao R, Honbo N, Karliner JS (2008) Vincristine attenuates doxorubicin cardiotoxicity. Biochem Biophys Res Commun 373:555–560

    PubMed  CAS  Google Scholar 

  149. Shimoyama M, Murata Y, Sumi K-I, Hamazoe R, Komuro I (2001) Docetaxel induced cardiotoxicity. Heart 86:219

    PubMed  CAS  Google Scholar 

  150. Nabholtz JM, North S, Smylie M et al (2000) Docetaxel (Taxotere) in combination with anthracyclines in the treatment of breast cancer. Semin Oncol 27:11–18

    PubMed  CAS  Google Scholar 

  151. Bird BRJH, Swain SM (2008) Cardiac toxicity in breast cancer survivors: review of potential cardiac problems. Clin Cancer Res 14:14–24

    PubMed  CAS  Google Scholar 

  152. Arbuck SG, Strauss H, Rowinsky E et al (1993) A reassessment of cardiac toxicity associated with taxol. J Natl Cancer Inst Monogr 15:117–130

    PubMed  Google Scholar 

  153. Hekmat E (1996) Fatal myocardial infarction potentially induced by paclitaxel. Ann Pharmacother 30:1110–1112

    PubMed  CAS  Google Scholar 

  154. Ewer MS, Glück S (2009) A woman’s heart: the impact of adjuvant endocrine therapy on cardiovascular health. Cancer 115:1813–1826

    PubMed  CAS  Google Scholar 

  155. Coates AS, Keshaviah A, Thurlimann B et al (2007) Five years of letrozole compared with tamoxifen as initial adjuvant therapy for postmenopausal women with endocrine-responsive early breast cancer: update of study BIG 1-98. J Clin Oncol 25:486–492

    PubMed  CAS  Google Scholar 

  156. Hernandez RK, Sørensen HT, Pedersen L, Jacobsen J, Lash TL (2009) Tamoxifen treatment and risk of deep venous thrombosis and pulmonary embolism: a Danish population-based cohort study. Cancer 19:4442–4449

    Google Scholar 

  157. Byar DP (1973) Proceedings: The Veterans Administration Cooperative Urological Research Group’s studies of cancer of the prostate. Cancer 32:1126–1130

    PubMed  CAS  Google Scholar 

  158. Brawer MK (2006) Hormonal therapy for prostate cancer. Rev Urol 8(Suppl 2):S35–S47

    PubMed  Google Scholar 

  159. Montgomery RB, Nelson PS, Lin D, Ryan CW, Garzotto M, Beer TM (2007) Diethylstilbestrol and docetaxel: a Phase II study of tubulin active agents in patients with metastatic, androgen-independent prostate cancer. Cancer 110:996–1002

    PubMed  Google Scholar 

  160. Keating NL, O’Malley AJ, Smith MR (2006) Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. J Clin Oncol 24:4448–4456

    PubMed  CAS  Google Scholar 

  161. Saylor PJ, Keating NL, Smith MR (2009) Prostate cancer survivorship: prevention and treatment of the adverse effects of androgen deprivation therapy. J Gen Intern Med 24(Suppl 2):S389–S394

    PubMed  Google Scholar 

  162. Voortman J, Giaccone G (2006) Severe reversible cardiac failure after bortezomib treatment combined with chemotherapy in a non-small cell lung cancer patient: a case report. BMC Cancer 6:129

    PubMed  Google Scholar 

  163. Enrico O, Gabriele B, Nadia C et al (2007) Unexpected cardiotoxicity in haematological bortezomib treated patients. Br J Haematol 138:396–397

    PubMed  Google Scholar 

  164. Richardson PG, Sonneveld P, Schuster MW et al (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352:2487–2498

    PubMed  CAS  Google Scholar 

  165. Herrmann J, Lerman LO, Lerman A (2010) On to the road to degradation: atherosclerosis and the proteasome. Cardiovasc Res 85:291–302

    PubMed  CAS  Google Scholar 

  166. Herrmann J, Saguner AM, Versari D et al (2007) Chronic proteasome inhibition contributes to coronary atherosclerosis. Circ Res 101:865–874

    PubMed  CAS  Google Scholar 

  167. Rajkumar SV (2005) Thalidomide therapy and deep venous thrombosis in multiple myeloma. Mayo Clin Proc 80:1549–1551

    PubMed  Google Scholar 

  168. Benjamini O, Kimhi O, Lishner M (2007) Severe pleuropericarditis and cardiomyopathy induced by high dose interferon alpha-2b. Isr Med Assoc J 9:486–487

    PubMed  CAS  Google Scholar 

  169. Zhao X-Y, Li G-Y, Liu Y et al (2008) Resveratrol protects against arsenic trioxide-induced cardiotoxicity in vitro and in vivo. Br J Pharmacol 154:105–113

    PubMed  CAS  Google Scholar 

  170. Vizzardi E, Zanini G, Antonioli E, D’Aloia A, Raddino R, Cas LD (2008) QT prolongation: a case of arsenical pericardial and pleural effusion. Cardiovasc Toxicol 8:41–44

    PubMed  Google Scholar 

  171. Fox E, Razzouk BI, Widemann BC et al (2008) Phase 1 trial and pharmacokinetic study of arsenic trioxide in children and adolescents with refractory or relapsed acute leukemia, including acute promyelocytic leukemia or lymphoma. Blood 111:566–573

    PubMed  CAS  Google Scholar 

  172. Ohnishi K, Yoshida H, Shigeno K et al (2000) Prolongation of the QT interval and ventricular tachycardia in patients treated with arsenic trioxide for acute promyelocytic leukemia. Ann Intern Med 133:881–885

    PubMed  CAS  Google Scholar 

  173. Zhao X, Feng T, Chen H et al (2008) Arsenic trioxide-induced apoptosis in H9c2 cardiomyocytes: implications in cardiotoxicity. Basic Clin Pharmacol Toxicol 102: 419–425

    PubMed  CAS  Google Scholar 

  174. Eisner RM, Husain A, Clark JI (2004) Case report and brief review: IL-2-induced myocarditis. Cancer Invest 22:401–404

    PubMed  Google Scholar 

  175. Du Bois JS, Udelson JE, Atkins MB (1995) Severe reversible global and regional ventricular dysfunction associated with high-dose interleukin-2 immunotherapy. J Immunother Emphasis Tumor Immunol 18:119–123

    PubMed  Google Scholar 

  176. Kragel AH, Travis WD, Steis RG, Rosenberg SA, Roberts WC (1990) Myocarditis or acute myocardial infarction associated with interleukin-2 therapy for cancer. Cancer 66:1513–1516

    PubMed  CAS  Google Scholar 

  177. Samlowski WE, Ward JH, Craven CM, Freedman RA (1989) Severe myocarditis following high-dose interleukin-2 administration. Arch Pathol Lab Med 113:838–841

    PubMed  CAS  Google Scholar 

  178. Acquavella N, Kluger H, Rhee J et al (2008) Toxicity and activity of a twice daily high-dose bolus interleukin 2 regimen in patients with metastatic melanoma and metastatic renal cell cancer. J Immunother 31:569–576

    PubMed  CAS  Google Scholar 

  179. Goel M, Flaherty L, Lavine S, Redman BG (1992) Reversible cardiomyopathy after high-dose interleukin-2 therapy (1991). J Immunother 11:225–229

    PubMed  CAS  Google Scholar 

  180. Zhang J, Yu ZX, Hilbert SL et al (1993) Cardiotoxicity of human recombinant interleukin-2 in rats. A morphological study. Circulation 87:1340–1353

    PubMed  CAS  Google Scholar 

  181. Crone SA, Zhao Y-Y, Fan L et al (2002) ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 8:459–465

    PubMed  CAS  Google Scholar 

  182. Grazette LP, Boecker W, Matsui T et al (2004) Inhibition of ErbB2 causes mitochondrial dysfunction in cardiomyocytes: implications for herceptin-induced cardiomyopathy. J Am Coll Cardiol 44:2231–2238

    PubMed  CAS  Google Scholar 

  183. Lemmens K, Doggen K, De Keulenaer GW (2007) Role of neuregulin-1/ErbB signaling in cardiovascular physiology and disease: implications for therapy of heart failure. Circulation 116:954–960

    PubMed  CAS  Google Scholar 

  184. Doggen K, Ray L, Mathieu M, Mc Entee K, Lemmens K, De Keulenaer GW (2009) Ventricular ErbB2/ErbB4 activation and downstream signaling in pacing-induced heart failure. J Mol Cell Cardiol 46:33–38

    PubMed  CAS  Google Scholar 

  185. Demetri GD, von Mehren M, Blanke CD et al (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347:472–480

    PubMed  CAS  Google Scholar 

  186. Felker GM, Thompson RE, Hare JM et al (2000) Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med 342: 1077–1084

    PubMed  CAS  Google Scholar 

  187. Patel B, Kloner RA, Ensley J, Al-Sarraf M, Kish J, Wynne J (1987) 5-Fluorouracil cardiotoxicity: left ventricular dysfunction and effect of coronary vasodilators. Am J Med Sci 294:238–243

    PubMed  CAS  Google Scholar 

  188. Sarkiss MG, Yusuf SW, Warneke CL et al (2007) Impact of aspirin therapy in cancer patients with thrombocytopenia and acute coronary syndromes. Cancer 109:621–627

    PubMed  CAS  Google Scholar 

  189. Cannon CP, Braunwald E, McCabe CH et al (2004) Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction 22 Investigators. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 350:1495–1504

    PubMed  CAS  Google Scholar 

  190. Yeh ETH, Bickford CL (2009) Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol 53:2231–2247

    PubMed  CAS  Google Scholar 

  191. Perik PJ, Rikhof B, de Jong FA, Verweij J, Gietema JA, van der Graaf WTA (2008) Results of plasma N-terminal pro B-type natriuretic peptide and cardiac troponin monitoring in GIST patients do not support the existence of imatinib-induced cardiotoxicity. Ann Oncol 19:359–361

    PubMed  CAS  Google Scholar 

  192. Turrisi G, Montagnani F, Grotti S, Marinozzi C, Bolognese L, Fiorentini G (2009) Congestive heart failure during imatinib mesylate treatment. Int J Cardiol

    Google Scholar 

  193. Todorova V, Vanderpool D, Blossom S et al (2009) Oral glutamine protects against cyclophosphamide-induced cardiotoxicity in experimental rats through increase of cardiac glutathione. Nutrition 25:812–817

    PubMed  CAS  Google Scholar 

  194. Yeh ETH, Tong AT, Lenihan DJ et al (2004) Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation 109:3122–3131

    PubMed  Google Scholar 

  195. Hacihanefioglu A, Tarkun P, Gonullu E (2008) Acute severe cardiac failure in a myeloma patient due to proteasome inhibitor bortezomib. Int J Hematol 88:219–222

    PubMed  Google Scholar 

  196. Ferrajoli A, O’Brien SM, Cortes JE et al (2003) Phase II study of alemtuzumab in chronic lymphoproliferative disorders. Cancer 98:773–778

    PubMed  CAS  Google Scholar 

  197. Fisher B, Costantino JP, Wickerham DL et al (1998) Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst 90:1371–1388

    PubMed  CAS  Google Scholar 

  198. Chu TF, Rupnick MA, Kerkela R et al (2007) Cardiotoxicity associated with the tyrosine kinase inhibitor sunitinib. Lancet 370:2011–2019

    PubMed  CAS  Google Scholar 

  199. Khoury HJ, Guilhot F, Hughes TP, Kim D-W, Cortes JE (2009) Dasatinib treatment for Philadelphia chromosome-positive leukemias: practical considerations. Cancer 115:1381–1394

    PubMed  CAS  Google Scholar 

  200. Yamaguchi K, Kanazawa S, Kinoshita Y, Muramatsu M, Nomura S (2005) Acute myocardial infarction with lung cancer during treatment with gefitinib: the possibility of gefitinib-induced thrombosis. Pathophysiol Haemost Thromb 34:48–50

    PubMed  CAS  Google Scholar 

  201. Law H (1996) Chemotherapy-induced myocardial infarction. Eur Heart J 17(6):966

    PubMed  CAS  Google Scholar 

  202. Smith I (2005) A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. New Engl J Med 353:2747–2757

    PubMed  Google Scholar 

  203. Coombes RC, Hall E, Gibson LJ et al (2004) A randomized trial of exemestane after 2 to 3 years of tamoxifen therapy in postmenopausal women with primary breast cancer. N Engl J Med 350:1081–1092

    PubMed  CAS  Google Scholar 

  204. Arai Y, Tadokoro J, Mitani K (2005) Ventricular tachycardia associated with infusion of rituximab in mantle cell lymphoma. Am J Hematol 78(4):317–318

    PubMed  Google Scholar 

  205. Perez-Verdia A, Angulo F, Hardwicke FL, Nugent KM (2005) Acute cardiac toxicity associated with high-dose intravenous methotrexate therapy: case report and review of the literature. Pharmacotherapy 25:1271–1276

    PubMed  Google Scholar 

  206. Judson I, Radford JA, Harris M et al (2001) Randomised phase II trial of pegylated liposomal doxorubicin (DOXIL/CAELYX) versus doxorubicin in the treatment of advanced or metastatic soft tissue sarcoma: a study by the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer 37:870–877

    PubMed  CAS  Google Scholar 

  207. Lyass O, Uziely B, Ben-Yosef R et al (2000) Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer 89:1037–1047

    PubMed  CAS  Google Scholar 

  208. van Dalen EC, van der Pal HJH, Caron HN, Kremer LC (2009) Different dosage schedules for reducing cardiotoxicity in cancer patients receiving anthracycline chemotherapy. Cochrane Database Syst Rev 4:CD005008

    PubMed  Google Scholar 

  209. de Nigris F, Rienzo M, Schiano C, Fiorito C, Casamassimi A, Napoli C (2008) Prominent cardioprotective effects of third generation beta blocker nebivolol against anthracycline-induced cardiotoxicity using the model of isolated perfused rat heart. Eur J Cancer 44:334–340

    PubMed  Google Scholar 

  210. de Azambuja E, Bedard PL, Suter T, Piccart-Gebhart M (2009) Cardiac toxicity with anti-HER-2 therapies-what have we learned so far? Target Oncol 4:77–88

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aarif Y. Khakoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khakoo, A.Y., Kwartler, C.S. (2011). Cardiovascular Complications of Cancer Therapeutics. In: Azoulay, E. (eds) Pulmonary Involvement in Patients with Hematological Malignancies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15742-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15742-4_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15741-7

  • Online ISBN: 978-3-642-15742-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics