Skip to main content

Disorders of Bile Acid Synthesis

  • Chapter
Inborn Metabolic Diseases
  • 4368 Accesses

Abstract

Two inborn errors of metabolism affect the modifications of the cholesterol nucleus in both major pathways for bile acid synthesis: 3β-hydroxy-∆5-C27-steroid dehydrogenase (3 β-dehydrogenase) deficiency and ∆4-3-oxosteroid 5β-reductase (5β-reductase) deficiency. These disorders produce cholestatic liver disease and malabsorption of fat and fat-soluble vitamins. Onset of symptoms is usually in the 1st year of life and, if left untreated, the liver disease can progress to cirrhosis and liver failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clayton PT, Leonard JV, Lawson AM et al. (1987) Familial giant cell hepatitis associated with synthesis of 3β,7α-dihydroxy- and 3β,7α,12α-trihydroxy-5-cholenoic acids. J Clin Invest 79:1031–1038

    Article  PubMed  CAS  Google Scholar 

  2. Heubi JE, Setchell KDR, Bove KE (2007) Inborn errors of bile acid metabolism. Semin Liver Dis 27:282–293

    Article  PubMed  CAS  Google Scholar 

  3. Subramaniam P, Clayton PT, Portmann BC et al. (2010) Variable clinical spectrum of the most common inborn error of bile acid metabolism -- 3β-Hydroxy-Δ5-C27-steroid dehydrogenase deficiency J Pediatr Gastroenterol Nutr 50:1–7

    Article  Google Scholar 

  4. Jacquemin E, Setchell KDR, O’Connell NC et al.(1994) A new cause of progressive intrahepatic cholestasis: 3β-hydroxy-Δ5-C27-steroid dehydrogenase/isomerase deficiency. J Pediatr 125:379–384

    Article  PubMed  CAS  Google Scholar 

  5. Ichimiya H, Egestad B, Nazer H et al. (1991) Bile acids and bile alcohols in a child with 3β-hydroxy-Δ5-C27-steroid dehydrogenase deficiency: effects of chenodeoxycholic acid treatment. J Lipid Res 32:829–841

    PubMed  CAS  Google Scholar 

  6. Schwarz M, Wright, AC, Davis DL et al. (2000) The bile acid synthetic gene 3-beta-hydroxy-delta-5-C27-steroid oxidoreductase is mutated in progressive intrahepatic cholestasis. J Clin Invest 106:1175–1184

    Article  PubMed  CAS  Google Scholar 

  7. Cheng JB, Jacquemin E, Gerhardt M et al. (2003) Molecular genetics of 3β-hydroxy-Δ5-C27-steroid oxidoreductase deficiency in 16 patients with loss of bile acid synthesis and liver disease. J Clin Endocrinol Metab 88:1833–1841

    Article  PubMed  CAS  Google Scholar 

  8. Lawson AM, Madigan MJ, Shortland DB, Clayton PT (1986) Rapid diagnosis of Zellweger syndrome and infantile Refsum’s disease by fast atom bombardment mass spectrometry of urine bile salts. ClinChimActa 161:221–231

    Article  CAS  Google Scholar 

  9. Mills K, Mushtaq I, Johnson A et al. (1998) A method for the quantitation of conjugated bile acids in dried blood spots using electrospray ionization mass spectrometry. Pediatr Res 43:361–368

    Article  PubMed  CAS  Google Scholar 

  10. Buchmann MS, Kvittingen EA, Nazer H et al. (1990) Lack of 3β-hydroxy-Δ5-C27-steroid dehydrogenase/isomerase in fibroblasts from a child with urinary excretion of 3β-hydroxy-Δ5-bile acids: a new inborn error of metabolism. J Clin Invest 86:2034–2037

    Article  PubMed  CAS  Google Scholar 

  11. Gonzalez E, Gerhardt MF, Fabre M et al. (2009) Oral cholic acid for hereditary defects of primary bile acid synthesis: a safe and effective long term therapy. Gastroenterology 137:1310–1320.e1–3

    Google Scholar 

  12. Clayton PT, Mills KA, Johnson AW et al. (1996) Delta 4–3-oxosteroid 5 beta-reductasedeficiency: failure of ursodeoxycholic acid treatment and response to chenodeoxycholic acid plus cholic acid. Gut 38:623–628

    Article  PubMed  CAS  Google Scholar 

  13. Lemonde HA, Custard EJ, Bouquet J et al. (2003) Mutations in SRD5B1 (AKR1D1), the gene encoding Δ4–3-oxosteroid 5β-reductase, in hepatitis and liver failure in infancy. Gut 52:1494–1499

    Article  PubMed  CAS  Google Scholar 

  14. Gonzales E, Cresteil D, Baussan C et al. (2004) SRD5B1 (AKR1D1) gene analysis in delta(4)-3-oxosteroid 5beta-reductase deficiency: evidence for primary genetic defect. J Hepatol 40:716–718

    Article  PubMed  CAS  Google Scholar 

  15. Sumazaki R, Nakamura N, Shoda J et al. (1997) Gene analysis in Δ4–3-oxosteroid 5β-reductase deficiency. Lancet 349:329

    Article  PubMed  CAS  Google Scholar 

  16. Setchell KDR, Suchy FJ, Welsh MB et al. (1988) Δ4–3-Oxosteroid 5β-reductase deficiency described in identical twins with neonatal hepatitis. A new inborn error in bile acid synthesis. J Clin Invest 82:2148–2157

    Article  PubMed  CAS  Google Scholar 

  17. Schneider BL, Setchell KDR, Whittington PF et al. (1994) Δ4–3-Oxosteroid 5β-reductase deficiency causing neonatal liver failure and neonatal hemochromatosis. J Pediatr 124:234–238

    Article  Google Scholar 

  18. Clayton PT, Patel E, Lawson AM et al. (1988) 3-Oxo-Δ4 bile acids in liver disease. Lancet 1:1283–1284

    Article  PubMed  CAS  Google Scholar 

  19. Clayton PT (1994) Δ4–3-Oxosteroid 5β-reductase deficiency and neonatal hemochromatosis (letter). J Pediatr 125:845–846

    PubMed  CAS  Google Scholar 

  20. Palermo M, Marazzi MG, Hughes BA et al. (2008) Human β4–3-oxosteroid 5β-reductase(AKR1D1) deficiency and steroid metabolism. Steroids 73:417–423

    Article  PubMed  CAS  Google Scholar 

  21. Clayton PT, Casteels M, Mieli-Vergani G, Lawson AM (1995) Familial giant cell hepatitis with low bile acid concentrations and increased urinary excretion of specific bile alcohols: a new inborn error of bile acid synthesis? Pediatr Res 37:424–431

    Article  PubMed  CAS  Google Scholar 

  22. Clayton PT, Verrips A, Sistermans E et al. (2002) Mutations in the sterol 27-hydroxylase gene (CYP27A) cause hepatitis of infancy as well as cerebrotendinous xanthomatosis. J Inherit Metab Dis 25:501–513

    Article  PubMed  CAS  Google Scholar 

  23. Wevers RA, Cruysberg JRM, Heijst v AFJ et al. (1992) Paediatric cerebrotendinous xanthomatosis. J Inherit Metab Dis 14:374–376

    Article  Google Scholar 

  24. Kuriyama M, Fujiyama J, Yoshidome H et al. (1991) Cerebrotendinous xanthomatosis: clinical features of eight patients and a review of the literature. J Neurol Sci 102:225–232

    Article  PubMed  CAS  Google Scholar 

  25. Bencze K, Polder DRV, Prockop LD (1990) Magnetic resonance imaging of the brain in CTX. J Neurol Neurosurg Psychiatry 53:166–167

    Article  PubMed  CAS  Google Scholar 

  26. Berginer VM, Shany S, Alkalay D et al. (1993) Osteoporosis and increased bone fractures in cerebrotendinous xanthomatosis. Metabolism 42:69–74

    Article  PubMed  CAS  Google Scholar 

  27. Cali JJ, Russell DW (1991) Characterisation of human sterol 27-hydroxylase: a mitochondrial cytochrome P-450 that catalyses multiple oxidations in bile acid biosynthesis. J Biol Chem 266:7774–7778

    PubMed  CAS  Google Scholar 

  28. Babiker A, Andersson O, Lund E et al. (1997) Elimination of cholesterol in macrophages and endothelial cells by the sterol 27-hydroxylase mechanism. Comparison with high density lipoprotein-mediated reverse cholesterol transport. J Biol Chem 272:26253–26261

    Article  PubMed  CAS  Google Scholar 

  29. Cali JJ, Hsieh C-L, Francke U, Russell DW (1991) Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis. J Biol Chem 266:7779–7783

    PubMed  CAS  Google Scholar 

  30. Leitersdorf E, Reshef A, Meiner V et al. (1993) Frameshift and splice-junction mutations in the sterol 27-hydroxylase gene cause cerebrotendinous xanthomatosis in Jews of Moroccan origin. J Clin Invest 91:2488–2496

    Article  PubMed  CAS  Google Scholar 

  31. Gallus GN, DottiMT, Federico A (2006) Clinical and molecular diagnosis of cerebrotendinous xanthomatosis with a review of the mutations in the CYP27A1 gene, Neurol Sci 27:143--149

    Article  PubMed  CAS  Google Scholar 

  32. Egestad B, Pettersson P, Skrede S, Sjövall J (1985) Fast atom bombardment mass spectrometry in the diagnosis of cerebrotendinous xanthomatosis. Scand J Clin Lab Invest 45:443–446

    Article  PubMed  CAS  Google Scholar 

  33. Koopman BJ, Molen JC, Wolthers BG, Waterreus RJ (1987) Screening for CTX by using an enzymatic method for 7α-hydroxylated steroids in urine. Clin Chem 33:142–143

    PubMed  CAS  Google Scholar 

  34. Koopman BJ, Waterreus RJ, Brekel HWC, Wolthers BG (1986) Detection of carriers of CTX. Clin Chim Acta 158:179–186

    Article  PubMed  CAS  Google Scholar 

  35. Skrede S, Björkhem I, Kvittingen EA et al. (1986) Demonstration of 26-hydroxylation of C27-steroids in human skin fibroblasts, and a deficiency of this activity in CTX. J Clin Invest 78:729–735

    Article  PubMed  CAS  Google Scholar 

  36. Berginer VM, Salen G, Shefer S (1984) Long-term treatment of CTX with chenodeoxycholic acid therapy. N Engl J Med 311:1649–1652

    Article  PubMed  CAS  Google Scholar 

  37. Berginer VM, Berginer J, Korczyn AD, Tadmor R (1994) Magnetic resonance imaging in cerebrotendinous xanthomatosis: a prospective clinical and neuroradiological study. J Neurol Sci 122:102–108

    Article  PubMed  CAS  Google Scholar 

  38. Lewis B, Mitchell WD, Marenah CB, Cortese C (1983) Cerebrotendinous xanthomatosis: biochemical response to inhibition of cholesterol synthesis. Br Med J 287:2122

    Google Scholar 

  39. Mimura Y, Kuriyama M, Tokimura Y et al. (1993) Treatment of cerebrotendinous xanthomatosis with low density lipoprotein (LDL) apheresis. J Neurol Sci 114:227–230

    Article  PubMed  CAS  Google Scholar 

  40. Chang WN, Lui CC (1997) Failure in the treatment of long-standing osteoporosis in cerebrotendinous xanthomatosis. J Formos Med Assoc 96:225–227

    PubMed  CAS  Google Scholar 

  41. Ferdinandusse S, Denis S, Clayton PT et al. (2000) Mutations in the gene encoding peroxisomal alpha-methylacyl-CoA racemase cause adult-onset sensory motor neuropathy. Nat Genet 24:188–191

    Article  PubMed  CAS  Google Scholar 

  42. Clarke CE, Alger S, Preece MA et al. (2004) Tremor and deep white matter changes in alpha-methylacyl-CoA racemase deficiency. Neurology 63:188–189

    PubMed  CAS  Google Scholar 

  43. Thompson SA, Calvin J, Hogg S et al. (2007) Relapsing encephalopathy in a patient with α-methyacyl-CoA racemase deficiency. J Neurol Neurosurg Psychiatry 79:448–450

    Article  PubMed  Google Scholar 

  44. Veldhoven v PP, Meyhi E, Squires RH et al. (2001) Fibroblast studies documenting a case of peroxisomal 2-methylacyl-CoA racemase deficiency: possible link between racemase deficiency and malabsorption and vitamin K deficiency. Eur J Clin Invest 31:714–722

    Article  Google Scholar 

  45. Setchell KD, Heubi JE, Bove KE et al. (2003) Liver disease caused by failure to racemise trihydroxycholestanoic acid: gene mutation and effect of bile acid therapy. Gastroenterology 124:217–232

    Article  PubMed  Google Scholar 

  46. Setchell KDR, Schwarz M, O’Connell NC et al. (1998) Identification of a new inborn error in bile acid synthesis: mutation of the oxysterol 7α-hydroxylase gene causes severe neonatal liver disease. J Clin Invest 102:1690–1703

    Article  PubMed  CAS  Google Scholar 

  47. Ueki I, Kimura A, Nishiyori A et al. (2008) Neonatal cholestatic liver disease in an Asian patient with a homozygous mutation in the oxysterol 7β-hydroxylase gene. J Pediatr Gastroenterol Nutr 46:465–469

    Article  PubMed  Google Scholar 

  48. Chong CPK, Mills PB, McClean P, Clayton PT (2010) Response to chenodeoxycholic Acid therapy in an infant with oxysterol 7 alpha-hydroxylase deficiency. J Inherit Metab Dis 33 [Suppl 1]:S122 Abstract

    Google Scholar 

  49. Tsaousidou MK, Ouahchi K, Warner TT et al. (2008) Sequence alterations within CYP7B1 implicate defective cholesterol homeostasis in motor-neuron degeneration. Am J Hum Genet 82:510–515

    Article  PubMed  CAS  Google Scholar 

  50. Mochel F, Rinaldo D, Lamari F et al (2011) Spastic paraplegia due to CYP7B1 mutations (SPG5): What can we learn about 27-hydroxycholesterol metabolism? J Inherit Metab Dis 34 (Suppl 3) Abstract S 266

    Google Scholar 

  51. Carlton VE, Harris BZ, Puffenberger EG et al. (2003) Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nat Genet 34:91–96

    Article  PubMed  CAS  Google Scholar 

  52. Setchell KDR, O’Connell NC (2000) Disorders of bile acid synthesis and metabolism. In: Walker WA, Durie PR, Hamilton JR et al. (eds) Paediatric gastrointestinal disease, 3rd edn. Decker, Hamilton, Ont, pp 1138–1170

    Google Scholar 

  53. Chong CPK, Mills PB, McClean P Clayton PT (2010) A new inborn error of bile acid synthesis -- bile acid-CoA ligase deficiency. SSIEM Meeting, 2010, Istanbul. J Inherit Metab Dis 33 [Suppl 1]:S122

    Google Scholar 

  54. Heubi JE, Setchell KD, Rosenthal P et al.(2009) Oral glycocholic acid treatment of patients with bile acid amidation defects improves growth and fat-soluble vitamin absorption Hepatology 50:895A-895A

    Article  Google Scholar 

  55. Pullinger CR, Eng C, Salen G et al. (2002) Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest 110:109–117

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Clayton, P.T. (2012). Disorders of Bile Acid Synthesis. In: Saudubray, JM., van den Berghe, G., Walter, J.H. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15720-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15720-2_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15719-6

  • Online ISBN: 978-3-642-15720-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics