Skip to main content

Hyperphenylalaninaemia

  • Chapter
Inborn Metabolic Diseases

Abstract

Mutations within the gene for the hepatic enzyme phenylalanine hydroxylase (PAH) and those involving enzymes of pterin metabolism are associated with hyperphenylalaninaemia (HPA). Phenylketonuria (PKU) is caused by a severe deficiency in PAH activity and if left untreated leads to permanent central nervous system damage. Dietary restriction of phenylalanine (PHE) along with amino acid, vitamin and mineral supplements, started in the first weeks of life and continued through childhood, is an effective treatment and allows for normal cognitive development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guldberg P, Rey F, Zschocke J et al. (1998) A European multicenter study of phenylalanine hydroxylase deficiency: classification of 105 mutations and a general system for genotype-based prediction of metabolic phenotype. Am J Hum Genet 63:71–79

    Article  PubMed  CAS  Google Scholar 

  2. Scriver C, Levy H, Donlon J (2001) Hyperphenylalaninaemia: phenylalanine hydroxylase deficiency. In: Valle D, Beaudet AL, Vogelstein B et al. (eds) Metabolic and molecular bases of inherited disease, 8th edn, updated April 2008. McGraw-Hill, New York

    Google Scholar 

  3. Ahring K, Belanger-Quintana A, Dokoupil K et al. (2009) Dietary management practices in phenylketonuria across European centres. Clin Nutr 28:231–236

    Article  PubMed  CAS  Google Scholar 

  4. Anonymous (1993) Phenylketonuria due to phenylalanine hydroxylase deficiency: an unfolding story. Medical Research Council Working Party on Phenylketonuria. BMJ 306:115–119

    Google Scholar 

  5. Burgard P, Bremer HJ, Buhrdel P et al. (1999) Rationale for the German recommendations for phenylalanine level control in phenylketonuria 1997. Eur J Pediatr 158:46–54

    Article  PubMed  CAS  Google Scholar 

  6. Anonymous (2001) American Academy of Pediatrics: Maternal phenylketonuria. Pediatrics 107:427–428

    Article  Google Scholar 

  7. Abadie V, Berthelot J, Feillet F et al. (2005) [Management of phenylketonuria and Hyperphenylalaninaemia: the French guidelines]. Arch Pediatr 12:594–601

    Article  PubMed  CAS  Google Scholar 

  8. Bekhof J, Rijn v M, Sauer PJ et al. (2005) Plasma phenylalanine in patients with phenylketonuria self-managing their diet. Arch Dis Child 90:163–164

    Article  PubMed  CAS  Google Scholar 

  9. Kure S, Hou DC, Ohura T et al. (1999) Tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. J Pediatr 135:375–378

    Article  PubMed  CAS  Google Scholar 

  10. Lindner M, Gramer G, Garbade SF et al. (2009) Blood phenylalanine concentrations in patients with PAH-deficient hyperphenylalaninaemia off diet without and with three different single oral doses of tetrahydrobiopterin: assessing responsiveness in a model of statistical process control. J Inherit Metab Dis 32:514–522

    Article  PubMed  CAS  Google Scholar 

  11. Gersting SW, Kemter KF, Staudigl M et al. (2008) Loss of function in phenylketonuria is caused by impaired molecular motions and conformational instability. Am J Hum Genet 83:5–17

    Article  PubMed  CAS  Google Scholar 

  12. Gersting SW, Lagler FB, Eichinger A et al. (2010) Pahenu1 is a mouse model for tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency and promotes analysis of the pharmacological chaperone mechanism in vivo. Hum Mol Genet 19:2039–2049

    Article  PubMed  CAS  Google Scholar 

  13. Sanford M, Keating GM (2009) Sapropterin: a review of its use in the treatment of primary hyperphenylalaninaemia. Drugs 69:461–476

    Article  PubMed  CAS  Google Scholar 

  14. Antoshechkin AG, Chentsova TV, Tatur V et al. (1991) Content of phenylalanine, tyrosine and their metabolites in CSF in phenylketonuria. J Inherit Metab Dis 14:749–754

    Article  PubMed  CAS  Google Scholar 

  15. Somaraju UR, Merrin M (2010) Sapropterin dihydrochloride for phenylketonuria. Cochrane Database Syst Rev 6:CD008005

    PubMed  Google Scholar 

  16. Anonymous (2010) Kuvan: summary of product characteristics. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/000943/human_med_000880.jsp&mid=WC0b01ac058001d124&murl=menus/medicines/medicines.jsp&jsenabled=true

  17. Ding Z, Harding CO, Thony B (2004) State-of-the-art 2003 on PKU gene therapy. Mol Genet Metab 81:3–8

    Article  PubMed  CAS  Google Scholar 

  18. Vajro P, Strisciuglio P, Houssin D et al. (1993) Correction of phenylketonuria after liver transplantation in a child with cirrhosis. N Engl J Med 329:363

    Article  PubMed  CAS  Google Scholar 

  19. Harding CO, Gibson KM (2010) Therapeutic liver repopulation for phenylketonuria. J Inherit Metab Dis 336:681–687

    Article  Google Scholar 

  20. Koch R, Moseley KD, Yano S et al. (2003) Large neutral amino acid therapy and phenylketonuria: a promising approach to treatment. Mol Genet Metab 79:110–113

    Article  PubMed  CAS  Google Scholar 

  21. Matalon R, Michals-Matalon K, Bhatia G et al. (2006) Large neutral amino acids in the treatment of phenylketonuria (PKU). J Inherit Metab Dis 29:732–738

    Article  PubMed  CAS  Google Scholar 

  22. Schindeler S, Ghosh-Jerath S, Thompson S et al. (2007) The effects of large neutral amino acid supplements in PKU: an MRS and neuropsychological study. Mol Genet Metab 91:48–54

    Article  PubMed  CAS  Google Scholar 

  23. Burgard P, Schmidt E, Rupp A et al. (1996) Intellectual development of the patients of the German Collaborative Study of children treated for phenylketonuria. Eur J Pediatr 155 [Suppl 1]:S33–38

    Article  PubMed  Google Scholar 

  24. Walter JH, White FJ, Hall SK et al. (2002) How practical are recommendations for dietary control in phenylketonuria? Lancet 360:55–57

    Article  PubMed  CAS  Google Scholar 

  25. Smith I, Beasley MG, Ades AE (1990) Intelligence and quality of dietary treatment in phenylketonuria. Arch Dis Child 65:472–478

    Article  PubMed  CAS  Google Scholar 

  26. Smith I, Beasley MG, Ades AE (1991) Effect on intelligence of relaxing the low phenylalanine diet in phenylketonuria. Arch Dis Child 66:311–316

    Article  PubMed  CAS  Google Scholar 

  27. Burgard P, Link R, Schweitzer-Krantz S (2000) The effect of a phenylalanine-restricted diet on phenylketonuria. Eur J Pediatr 159 [Suppl 2]:S69

    Article  PubMed  Google Scholar 

  28. Lundstedt G, Johansson A, Melin L et al. (2001) Adjustment and intelligence among children with phenylketonuria in Sweden. Acta Paediatr 90:1147–1152

    Article  PubMed  CAS  Google Scholar 

  29. Poustie VJ, Wildgoose J (2010) Dietary interventions for phenylketonuria. Cochrane Database Syst Rev:CD001304

    Google Scholar 

  30. Bosch AM, Tybout W, Spronsen v FJ et al. (2007) The course of life and quality of life of early and continuously treated Dutch patients with phenylketonuria. J Inherit Metab Dis 30:29–34

    Article  PubMed  CAS  Google Scholar 

  31. Simon E, Schwarz M, Roos J et al. (2008) Evaluation of quality of life and description of the sociodemographic state in adolescent and young adult patients with phenylketonuria (PKU). Health Qual Life Outcomes 6:25

    Article  PubMed  Google Scholar 

  32. Welsh M, Pennington B (2000) Phenylketonuria. In: Yeats KO, Ris, MD, Taylor HG (eds) Pediatric neuropsychology. Guildford Press, New York, pp 275–299

    Google Scholar 

  33. Moyle JJ, Fox AM, Arthur M et al. (2007) Meta-analysis of neuropsychological symptoms of adolescents and adults with PKU. Neuropsychol Rev 17:91–101

    Article  PubMed  CAS  Google Scholar 

  34. Albrecht J, Garbade SF, Burgard P (2009) Neuropsychological speed tests and blood phenylalanine levels in patients with phenylketonuria: a meta-analysis. Neurosci Biobehav Rev 33:414–421

    Article  PubMed  CAS  Google Scholar 

  35. Cleary MA, Walter JH, Wraith JE et al. (1995) Magnetic resonance imaging in phenylketonuria: reversal of cerebral white matter change. J Pediatr 127:251–255

    Article  PubMed  CAS  Google Scholar 

  36. Feldmann R, Denecke J, Pietsch M et al. (2002) Phenylketonuria: no specific frontal lobe-dependent neuropsychological deficits of early-treated patients in comparison with diabetics. Pediatr Res 51:761–765

    PubMed  Google Scholar 

  37. Thompson AJ, Smith I, Brenton D et al. (1990) Neurological deterioration in young adults with phenylketonuria. Lancet 336:602–605

    Article  PubMed  CAS  Google Scholar 

  38. Lee P, Smith I, Piesowicz A et al. (1999) Spastic paraparesis after anaesthesia. Lancet 353:554

    Article  PubMed  CAS  Google Scholar 

  39. Robinson M, White FJ, Cleary MA et al. (2000) Increased risk of vitamin B12 deficiency in patients with phenylketonuria on an unrestricted or relaxed diet. J Pediatr 136:545–547

    Article  PubMed  CAS  Google Scholar 

  40. Koletzko B, Beblo S, Demmelmair H et al. (2009) Does dietary DHA improve neural function in children? Observations in phenylketonuria. Prostaglandins Leukot Essent Fatty Acids 81:159–164

    Article  PubMed  CAS  Google Scholar 

  41. Lee PJ, Amos A, Robertson L et al. (2009). Adults with late diagnosed PKU and severe challenging behaviour: a randomized placebo-controlled trial of a phenylalanine-restricted diet. J Neurol Neurosurg Psychiatry 80: 631–635

    Article  PubMed  CAS  Google Scholar 

  42. Mabry CC, Denniston JC, Nelson TL et al. (1963) Maternal phenylketonuria. A cause of mental retardation in children without the metabolic defect. N Engl J Med 269:1404–1408

    Article  PubMed  CAS  Google Scholar 

  43. Lenke RR, Levy HL (1980) Maternal phenylketonuria and Hyperphenylalaninaemia. An international survey of the outcome of untreated and treated pregnancies. N Engl J Med 303:1202–1208

    Article  PubMed  CAS  Google Scholar 

  44. Koch R, Hanley W, Levy H et al. (2003) The Maternal Phenylketonuria International Study: 1984–2002. Pediatrics 112:1523–1529

    PubMed  Google Scholar 

  45. Widaman KF, Azen C (2003) Relation of prenatal phenylalanine exposure to infant and childhood cognitive outcomes: results from the International Maternal PKU Collaborative Study. Pediatrics 112:1537–1543

    PubMed  Google Scholar 

  46. Levy HL, Guldberg P, Guttler F et al. (2001) Congenital heart disease in maternal phenylketonuria: report from the Maternal PKU Collaborative Study. Pediatr Res 49:636–642

    Article  PubMed  CAS  Google Scholar 

  47. Guttler F, Azen C, Guldberg P et al. (2003) Impact of the phenylalanine hydroxylase gene on maternal phenylketonuria outcome. Pediatrics 112:1530–1533

    PubMed  Google Scholar 

  48. Koch R, Friedman E, Azen C et al. (2000) The International Collaborative Study of Maternal Phenylketonuria: status report 1998. Eur J Pediatr 159 [Suppl 2]:S156–160

    Article  PubMed  Google Scholar 

  49. Smith I, Glossop J, Beasley M (1990) Fetal damage due to maternal phenylketonuria: effects of dietary treatment and maternal phenylalanine concentrations around the time of conception (an interim report from the UK Phenylketonuria Register). J Inherit Metab Dis 13:651–657

    Article  PubMed  CAS  Google Scholar 

  50. Galan HL, Marconi AM, Paolini CL et al. (2009) The transplacental transport of essential amino acids in uncomplicated human pregnancies. Am J Obstet Gynecol 200:91 e91–97

    Google Scholar 

  51. Lee PJ, Ridout D, Walter JH et al. (2005) Maternal phenylketonuria: report from the United Kingdom Registry 1978–97. Arch Dis Child 90:143–146

    Article  PubMed  CAS  Google Scholar 

  52. Maillot F, Lilburn M, Baudin J et al. (2008) Factors influencing outcomes in the offspring of mothers with phenylketonuria during pregnancy: the importance of variation in maternal blood phenylalanine. Am J Clin Nutr 88:700–705

    PubMed  CAS  Google Scholar 

  53. Dhondt JL (2010) Lessons from 30 years of selective screening for tetrahydrobiopterin deficiency. J Inherit Metab Dis 33 [Suppl 2]:219–223

    Article  CAS  Google Scholar 

  54. Liu KM, Liu TT, Lee NC et al. (2008) Long-term follow-up of Taiwanese Chinese patients treated early for 6-pyruvoyl-tetrahydropterin synthase deficiency. Arch Neurol 65:387–392

    Article  PubMed  Google Scholar 

  55. Ponzone A, Guardamagna O, Spada M et al. (1993) Differential diagnosis of hyperphenylalaninaemia by a combined phenylalanine-tetrahydrobiopterin loading test. Eur J Pediatr 152:655–661

    Article  PubMed  CAS  Google Scholar 

  56. Hyland K, Surtees RA, Heales SJ et al. (1993) Cerebrospinal fluid concentrations of pterins and metabolites of serotonin and dopamine in a pediatric reference population. Pediatr Res 34:10–14

    Article  PubMed  CAS  Google Scholar 

  57. Smith I, Hyland K, Kendall B (1985) Clinical role of pteridine therapy in tetrahydrobiopterin deficiency. J Inherit Metab Dis 8 [Suppl 1]:39–45

    Article  PubMed  Google Scholar 

  58. Hyland K (1993) Abnormalities of biogenic amine metabolism. J Inherit Metab Dis 16:676–690

    Article  PubMed  CAS  Google Scholar 

  59. Schuler A, Kalmanchey R, Barsi P et al. (2000) Deprenyl in the treatment of patients with tetrahydrobiopterin deficiencies. J Inherit Metab Dis 23:329–332

    Article  PubMed  CAS  Google Scholar 

  60. Ponzone A, Spada M, Ferraris S et al. (2004) Dihydropteridine reductase deficiency in man: from biology to treatment. Med Res Rev 24:127–150

    Article  PubMed  CAS  Google Scholar 

  61. Porta F, Mussa A, Concolino D et al. (2009) Dopamine agonists in 6-pyruvoyl tetrahydropterin synthase deficiency. Neurology 73:633–637

    Article  PubMed  CAS  Google Scholar 

  62. Ogawa A, Kanazawa M, Takayanagi M et al. (2008) A case of 6-pyruvoyl-tetrahydropterin synthase deficiency demonstrates a more significant correlation of l-dopa dosage with serum prolactin levels than CSF homovanillic acid levels. Brain Dev 30:82–85

    Article  PubMed  Google Scholar 

  63. Tanaka Y, Kato M, Muramatsu T et al. (2007) Early initiation of ldopa therapy enables stable development of executive function in tetrahydrobiopterin (BH4) deficiency. Dev Med Child Neurol 49:372–376

    Article  PubMed  Google Scholar 

  64. Jaggi L, Zurfluh MR, Schuler A et al. (2008) Outcome and longterm follow-up of 36 patients with tetrahydrobiopterin deficiency. Mol Genet Metab 93:295–305

    Article  PubMed  CAS  Google Scholar 

  65. Leuzzi V, Carducci CA, Carducci CL et al. (2010) Phenotypic variability, neurological outcome and genetics background of 6-pyruvoyl-tetrahydropterin synthase deficiency. Clin Genet 77:249–257

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walter, J., Lachmann, R., Burgard, P. (2012). Hyperphenylalaninaemia. In: Saudubray, JM., van den Berghe, G., Walter, J.H. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15720-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15720-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15719-6

  • Online ISBN: 978-3-642-15720-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics