Skip to main content

Universal Coefficient Theorems and Assembly Maps in KK-Theory

  • Chapter
  • First Online:
Topics in Algebraic and Topological K-Theory

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2008))

Abstract

We introduce equivariant Kasparov theory using its universal property and construct the Baum–Connes assembly map by localising the Kasparov category at a suitable subcategory. Then we explain a general machinery to construct derived functors and spectral sequences in triangulated categories. This produces various generalisations of the Rosenberg–Schochet Universal Coefficient Theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asadollahi, J., Salarian, S.: Gorenstein objects in triangulated categories. J. Algebra 281(1), 264–286 (2004) MR 2091971 (2006b:18011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beĭlinson, A.A., Bernstein, J., Deligne, P.: Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100, pp.;5–171. Soc. Math. France, Paris, (1982) MR 751966 (86g:32015)

    Google Scholar 

  3. Beligiannis, A.: Relative homological algebra and purity in triangulated categories. J.;Algebra 227(1), 268–361 (2000) MR 1754234 (2001e:18012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blackadar, B.: K-theory for operator algebras. In: Mathematical Sciences Research Institute Publications, 2nd edn., vol.;5. Cambridge University Press, Cambridge (1998) MR 1656031 (99g:46104)

    Google Scholar 

  5. Bonkat, A.: Bivariante K-Theorie für Kategorien projektiver Systeme von C -Algebren. Ph.D. thesis, Westf. Wilhelms-Universität Münster (2002) (German). Electronically available at the Deutsche Nationalbibliothek at dokserv?idn=967387191

    Google Scholar 

  6. Brinkmann, H.-B.: Relative homological algebra and the Adams spectral sequence. Arch. Math. 19, 137–155 (1968) MR 0230788 (37 #6348)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brown, L.G., Green, P., Rieffel, M.A.: Stable isomorphism and strong Morita equivalence of C -algebras, Pac. J. Math. 71(2), 349–363 (1977) MR 0463928 (57 #3866)

    MATH  MathSciNet  Google Scholar 

  8. Christensen, J.D.: Ideals in triangulated categories: phantoms, ghosts and skeleta. Adv. Math. 136(2), 284–339 (1998) MR 1626856 (99g:18007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Connes, A.: An analogue of the Thom isomorphism for crossed products of a C -algebra by an action of R. Adv. Math. 39(1), 31–55 (1981) MR 605351 (82j:46084)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cuntz, J.: Generalized homomorphisms between C -algebras and KK-theory. In: Dynamics and processes (Bielefeld, 1981). Lecture Notes in Mathematics, vol. 1031, pp.;31–45. Springer, Berlin (1983) MR 733641 (85j:46126)

    Google Scholar 

  11. Cuntz, J.: A new look at KK-theory. K-Theory 1(1), 31–51 (1987) MR 899916 (89a:46142)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cuntz, J., Meyer, R., Rosenberg, J.M.: Topological and bivariant K-theory. In: Oberwolfach Seminars, vol.;36. Birkhäuser, Basel (2007) MR 2340673 (2008j:19001)

    Google Scholar 

  13. Eilenberg, S., Moore, J.C.: Foundations of relative homological algebra. Mem. Am. Math. Soc. 55, 39 (1965) MR 0178036 (31 #2294)

    MathSciNet  Google Scholar 

  14. Freyd, P.: Representations in abelian categories. In: Proceedings of the Conference on Categorical Algebra (La Jolla, Calif., 1965), pp.;95–120. Springer, New York (1966) MR 0209333 (35 #231)

    Google Scholar 

  15. Higson, N.: A characterization of KK-theory. Pac. J. Math. 126(2), 253–276 (1987) MR 869779

    MATH  MathSciNet  Google Scholar 

  16. Higson, N.: Algebraic K-theory of stable C -algebras. Adv. Math. 67(1), 140 (1988) MR 922140 (89g:46110)

    Article  MathSciNet  Google Scholar 

  17. Kasparov, G.G.: The operator K-functor and extensions of C -algebras. Izv. Akad. Nauk SSSR Ser. Mat. 44(3), 571–636, 719 (1980) MR 582160 (81m:58075)

    Google Scholar 

  18. Kasparov, G.G.: Equivariant KK-theory and the Novikov conjecture. Invent. Math. 91(1), 147–201 (1988) MR 918241 (88j:58123)

    Google Scholar 

  19. Keller, B.: Derived categories and their uses. In: Handbook of algebra, vol.;1, pp.;671–701. North-Holland, Amsterdam (1996) MR 1421815 (98h:18013)

    Google Scholar 

  20. Lance, E.C.: Hilbert C -modules. A toolkit for operator algebraists. In: London Mathematical Society Lecture Note Series, vol. 210. Cambridge University Press, Cambridge (1995) MR 1325694 (96k:46100)

    Google Scholar 

  21. Mac;Lane, S.: Homology. In: Classics in Mathematics. Springer, Berlin (1995) Reprint of the 1975 edition. MR 1344215 (96d:18001)

    Google Scholar 

  22. MacLane, S.: Categories for the working mathematician. In: Graduate Texts in Mathematics, vol. 5. Springer, New York (1971) MR 0354798 (50 #7275)

    Google Scholar 

  23. Meyer, R.: Equivariant Kasparov theory and generalized homomorphisms. K-Theory 21(3), 201–228 (2000) MR 1803228 (2001m:19013)

    Google Scholar 

  24. Meyer, R.: Local and analytic cyclic homology. In: EMS Tracts in Mathematics, vol.;3. European Mathematical Society (EMS), Zürich (2007) MR 2337277 (2009g:46138)

    Google Scholar 

  25. Meyer, R.: Categorical aspects of bivariant K-theory, K-theory and noncommutative geometry. In: EMS Series of Congress Reports, pp.;1–39. European Mathematical Society, Zürich, (2008) MR 2513331

    Google Scholar 

  26. Meyer, R., Nest, R.: The Baum-Connes conjecture via localisation of categories. Topology 45(2), 209–259 (2006) MR 2193334 (2006k:19013)

    Google Scholar 

  27. Meyer, R., Nest, R.: Homological algebra in bivariant \(\textrm{ K}\)dash -theory and other triangulated categories. I, eprint (2007) math.KT/0702146

    Google Scholar 

  28. Mingo, J.A., Phillips, W.J.: Equivariant triviality theorems for Hilbert C -modules. Proc. Am. Math. Soc. 91(2), 225–230 (1984) MR 740176 (85f:46111)

    Google Scholar 

  29. Neeman, A.: Triangulated categories. In: Annals of Mathematics Studies, vol. 148. Princeton University Press, Princeton, NJ (2001)

    Google Scholar 

  30. Pimsner, M., Voiculescu, D.: Exact sequences for K-groups and Ext-groups of certain cross-product C -algebras, J. Oper. Theory 4(1), 93–118 (1980) MR 587369 (82c:46074)

    Google Scholar 

  31. Puschnigg, M.: Diffeotopy functors of ind-algebras and local cyclic cohomology. Doc. Math. 8, 143–245 (2003) (electronic) MR 2029166 (2004k:46128)

    Google Scholar 

  32. Rieffel, M.A.: Induced representations of C -algebras. Adv. Math. 13, 176–257 (1974) MR 0353003 (50 #5489)

    Google Scholar 

  33. Rieffel, M.A.: Morita equivalence for C -algebras and W -algebras. J. Pure Appl. Algebra 5, 51–96 (1974) MR 0367670 (51 #3912)

    Google Scholar 

  34. Rieffel, M.A.: Strong Morita equivalence of certain transformation group C -algebras. Math. Ann. 222(1), 7–22 (1976) MR 0419677 (54 #7695)

    Google Scholar 

  35. Rosenberg, J., Schochet, C.: The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized K-functor. Duke Math. J. 55(2), 431–474 (1987) MR 894590 (88i:46091)

    Google Scholar 

  36. Street, R.: Homotopy classification of filtered complexes. J. Aust. Math. Soc. 15, 298–318 (1973) MR 0340380 (49 #5135)

    Google Scholar 

  37. Verdier, J.-L.: Des catégories dérivées des catégories abéliennes, Astérisque (1996), vol.;239, xii+253 pp. (1997), With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis. MR 1453167 (98c:18007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Meyer .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meyer, R. (2011). Universal Coefficient Theorems and Assembly Maps in KK-Theory. In: Topics in Algebraic and Topological K-Theory. Lecture Notes in Mathematics(), vol 2008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15708-0_2

Download citation

Publish with us

Policies and ethics