Novel Spectral Descriptor for Object Shape

  • Atul Sajjanhar
  • Guojun Lu
  • Dengsheng Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6297)


In this paper, we propose a novel descriptor for shapes. The proposed descriptor is obtained from 3D spherical harmonics. The inadequacy of 2D spherical harmonics is addressed and the method to obtain 3D spherical harmonics is described. 3D spherical harmonics requires construction of a 3D model which implicitly represents rich features of objects. Spherical harmonics are used to obtain descriptors from the 3D models. The performance of the proposed method is compared against the CSS approach which is the MPEG-7 descriptor for shape contour. MPEG-7 dataset of shape contours, namely, CE-1 is used to perform the experiments. It is shown that the proposed method is effective.


shape descriptor content based image retrieval feature extraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pu, J., Ramani, K.: On visual similarity based 2D drawing retrieval. Computer-Aided Design 38, 249–259 (2006)CrossRefGoogle Scholar
  2. 2.
    Sajjanhar, A., Lu, G., Zhang, D.: Spherical Harmonics Descriptor for 2d-Image Retrieval. In: IEEE International Conference on Multimedia and Expo., pp. 105–108 (2005)Google Scholar
  3. 3.
    Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation Invariant Spherical Harmonic Representation of 3d Shape Descriptors. In: Symposium on Geometry Processing, pp. 167–175 (2003)Google Scholar
  4. 4.
    Kazhdan, M.: Shape Representations and Algorithms for 3d Model Retrieval, PhD Thesis, Princeton University (2004)Google Scholar
  5. 5.
    Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A search engine for 3d models. In: ACM transactions on Graphics, pp. 83–105 (2003)Google Scholar
  6. 6.
    Rosin, P.L., West, G.A.W.: Salience distance transforms. Graphical Models Image Processing 57, 483–521 (1995)zbMATHCrossRefGoogle Scholar
  7. 7.
    Attali, D., Boissonnat, J.: A Linear Bound on the Complexity of the Delaunay Triangulation of Points on Polyhedral Surfaces. Discrete and Computational Geometry 31(3), 369–384 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Toriwaki, J.I., Saitoh, T., Okada, M.: Distance transformation and skeleton for shape feature analysis. In: International Workshop on Visual Form, pp. 547–563 (1992)Google Scholar
  9. 9.
    Tsang, P.W.M., Yuen, P.C., Lam, F.K.: Classification of partially occluded objects using 3-poiny matching and distance transformation. Pattern Recognition 27, 27–40 (1994)CrossRefGoogle Scholar
  10. 10.
    Paglieroni, D.W.: Distance Transforms: Properties and machine vision applications. CVGIP: Graphical Models Image Processing 54, 56–74 (1992)CrossRefGoogle Scholar
  11. 11.
    Healy, D., Kostelec, P., Moore, S.: FFTs for the 2-sphere-improvements and variations. Journal of Fourier Analysis and Applications 9(4), 341–385 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Driscoll, J., Healy, D.: Computing Fourier transforms and convolutions on the 2-sphere. Advances in Applied Mathematics 15, 202–250 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Borgefors, G.: Distance transformations in digital images. Computer Vision, Graphics, and Image Processing 34(3), 344–371 (1986)CrossRefGoogle Scholar
  14. 14.
    Zhang, D.S., Lu, G.: Review of Shape Representation and Description Techniques. Pattern Recognition 37(1), 1–19 (2004)zbMATHCrossRefGoogle Scholar
  15. 15.
    Heinz, B., Gil, J., Kirkpatrick, D., Werman, M.: Linear Time Euclidean Distance Transform Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(5), 529–533 (1995)CrossRefGoogle Scholar
  16. 16.
    Shape data for the MPEG-7 core experiment CE-Shape-1, (last accessed December 9, 2009)
  17. 17.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Atul Sajjanhar
    • 1
  • Guojun Lu
    • 2
  • Dengsheng Zhang
    • 2
  1. 1.School of Information TechnologyDeakin UniversityBurwoodAustralia
  2. 2.Gippsland School of Information TechnologyMonash UniversityChurchillAustralia

Personalised recommendations