Advertisement

Adaptive Energy Diffusion for Blind Inverse Halftoning

  • Lei Wang
  • Binh-Son Hua
  • Xueqing Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6297)

Abstract

We propose a blind inverse halftoning method with adaptive energy diffusion. A discrete Voronoi diagram is built by treating halftone dots as Voronoi cell sites. Gaussian filters are then created adaptively based on Voronoi cells and used for energy diffusion to form the grayscale inverse halftone image. We further perform a median filter on the Gaussian filters’ parameters to maintain consistency of filters across different image regions. To remove artifacts in dense halftone dots area, we show that a secondary Voronoi diagram can be built based on the non-halftone dots and a heuristic blending can be employed. Comparing with other inverse halftoning methods, our method is able to remove artifacts in both sparse and dense halftone dots regions and produces visually pleasant gray-scale images. Our method is also applicable to edge enhancement and structure-aware halftoning.

Keywords

digital halftoning inverse halftoning error diffusion discrete Voronoi diagram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Floyd, R.W., Stienberg, L.: An Adaptive Algorithm for Spatial Grayscale. Proc. SID 17(2), 75–77 (1976)Google Scholar
  2. 2.
    Jarvis, J., Judice, C., Ninke, W.: A survey of techniques for displaying of continuous-tone pictures on bilevel displays. Computer. Graphics Image Process. 5, 130 (1976)Google Scholar
  3. 3.
    Ulichney, R.: Digital Halftoning. MIT Press, Cambridge (1987)Google Scholar
  4. 4.
    Knuth, D.E.: Digital halftones by dot diffusion. ACM Trans. Graph. 6, 245–273 (1987)zbMATHCrossRefGoogle Scholar
  5. 5.
    Pang, W., Qu, Y., Wong, T., Cohen-Or, D., Heng, P.: Structure-aware halftoning. In: ACM SIGGRAPH 2008 Papers, SIGGRAPH 2008, Los Angeles, California, August 11 - 15, pp. 1–8. ACM, New York (2008)CrossRefGoogle Scholar
  6. 6.
    Eschbach, R., Knox, K.T.: Error-diffusion algorithm with edge enhancement. J. Opt. Soc. Am. A 8, 1844–1850 (1991)CrossRefGoogle Scholar
  7. 7.
    Ostromoukhov, V.: A simple and efficient error-diffusion algorithm. In: Proceedings of the 28th Annual Conference on Computer Graphics and interactive Techniques SIGGRAPH 2001, pp. 567–572. ACM, New York (2001)CrossRefGoogle Scholar
  8. 8.
    Venkata, N.D., Kite, T.D., Venkataraman, M., Evans, B.L.: Fast blind inverse halftoning. In: Proc. IEEE International Conference on Image Processing, vol. 2, p. 648 (1998)Google Scholar
  9. 9.
    Luo, J., De Queiroz, R., Fan, Z.: A robust technique for image descreening based on the wavelet transform. IEEE Trans. on Signal processing 46(4), 1179–1184 (1998)CrossRefGoogle Scholar
  10. 10.
    Xiong, Z., Orchard, M.T., Ramchandran, K.: Inverse halftoning using wavelets. In: Proc. IEEE International Conference on Image Processing, pp. 569–572 (1996)Google Scholar
  11. 11.
    Kite, T.D., Venkata, N.D., Evans, B.L., Bovik, A.C.: A high quality, fast inverse halftoning algorithm for error diffusion halftones. In: Proc. IEEE International Conference on Image Processing, vol. 2, p. 593 (1998)Google Scholar
  12. 12.
    Shen, M.Y., Kuo, C.-C.J.: A Robust Nonlinear Filtering Approach to Inverse Halftoning. J. Vis. Commun. Image Represen. 12, 845 (2001)Google Scholar
  13. 13.
    Stevenson, R.L.: Inverse halftoning via MAP estimation. IEEE Trans. on Image Process. 6, 574–583 (1997)CrossRefGoogle Scholar
  14. 14.
    Bozkurt Unal, G., Cetin, A.E.: Restoration of Error-Diffused Images Using Projection Onto Convex Sets. IEEE Trans. on Image Processing (2001)Google Scholar
  15. 15.
    Mese, M., Vaidyanathan, P.P.: Look Up Table (LUT) Method for Inverse Halftoning. IEEE Trans. on Image Process. 10(10), 1566–1578 (2001)CrossRefGoogle Scholar
  16. 16.
    Kim, H.Y., de Queiroz, R.: Inverse halftoning by decision tree learning. In: Proc. IEEE Int. Conf. Image Processing, vol. 2, pp. 913–916 (2003)Google Scholar
  17. 17.
    Chung, K.L., Wu, S.T.: Inverse Halftoning Algorithm Using Edge-Based Lookup Table Approach. IEEE Trans. on Image Process. 14(10), 1583–1589 (2005)CrossRefGoogle Scholar
  18. 18.
    Mese, M., Vaidynathan, P.P.: Tree-Structured Method for LUT Inverse Halftoning and for Image Halftoning. IEEE T. Image Processing 11(6), 644–655 (2002)CrossRefGoogle Scholar
  19. 19.
    Rong, G., Tan, T.S.: Variants of jump flooding algorithm for computing discrete voronoi diagrams. In: ISVD 2007: Proceedings of the 4th Int. Symp. on Voronoi Diagrams in Science and Engineering, pp. 176–181. IEEE Computer Society, Los Alamitos (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Lei Wang
    • 1
  • Binh-Son Hua
    • 2
  • Xueqing Li
    • 1
  1. 1.College of Computer ScienceShandong University 
  2. 2.School of ComputingNational University of Singapore 

Personalised recommendations