Advertisement

A Simple Content-Based Strategy for Estimating the Geographical Location of a Webcam

  • Frode Eika Sandnes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6297)

Abstract

This study proposes a strategy for determining the approximate geographical location of a webcam based on a sequence of images taken at regular intervals. For a time-stamped image sequence spanning 24 hours the approximate sunrise and sunset times are determined by classifying images into day and nighttime images based on the image intensity. Based on the sunrise and sunset times both the latitude and longitude of the webcam can be determined. Experimental data demonstrates the effectiveness of the strategy.

Keywords

image analysis geographical information system webcam 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahern, S., Naaman, M., Nair, R., Hui-I Yang, J.: World explorer: visualizing aggregate data from unstructured text in geo-referenced collections. In: The proceedings of 7th ACM/IEEE-CS joint conference on Digital libraries, pp. 1–10 (2007)Google Scholar
  2. 2.
    Alvarez, P.: Using Extended File Information (EXIF) File headers in Digital Evidence Analysis. International Journal of Digital Evidence 2, 3 (2004)Google Scholar
  3. 3.
    ANSI: ANSI PH2.7-1973 American National Standard Photographic Exposure Guide. American National Standards Institute, New York (1973)Google Scholar
  4. 4.
    ANSI: ANSI PH2.7-1986. American National Standard for Photography - Photographic Exposure Guide. American National Standards Institute, New York (1986)Google Scholar
  5. 5.
    Bao, G.-Q., Xiong, S.-S., Zhou, Z.-Y.: Vision-based horizon extraction for micro air vehicle flight control. IEEE Transactions on Instrumentation and Measurement 54(3), 1067–1072 (2005)CrossRefGoogle Scholar
  6. 6.
    Carboni, D., Sanna, S., Zanarini, P.: GeoPix: image retrieval on the geo web, from camera click to mouse click. In: Proceedings of the 8th conference on Human-computer interaction with mobile devices and services, pp. 169–172 (2006)Google Scholar
  7. 7.
    Cozman, F., Krotkov, E.: Robot localization using a computer vision sextant. In: The Proceedings of IEEE International Conference on Robotics and Automation, pp. 106–111 (1995)Google Scholar
  8. 8.
    Ettinger, S.M., Nechyba, C.: lfju, P. G.; Towards Flights autonomy: Vision-based horizon detection for micro air vehicles. In: The Proceedings of IEEE International Conference on Robotics and Automation (2002)Google Scholar
  9. 9.
    GAO: GLOBAL POSITIONING SYSTEM: Significant Challenges in Sustaining and Upgrading Widely Used Capabilities. United States Government Accountability Office (2009) Google Scholar
  10. 10.
    Jacobs, N., Roman, N., Pless, R.: Toward Fully Automatic Geo-Location and Geo-Orientation of Static Outdoor Cameras. In: The Proceedings of IEEE Workshop on Applications of Computer Vision, pp. 1–6 (2008)Google Scholar
  11. 11.
    Jacobs, N., Satkin, S., Roman, N., Speyer, R., Pless, R.: Geolocating Static Cameras. In: The Proceedings of IEEE 11th International Conference on Computer Vision (ICCV 2007), pp. 1–6 (2007)Google Scholar
  12. 12.
    Jang, C.-J., Lee, J.-Y., Lee, J.-W., Cho, H.-G.: Smart Management System for Digital Photographs using Temporal and Spatial Features with EXIF metadata. In: The Proceedings of 2nd International Conference on Digital Information Management, pp. 110–115 (2007)Google Scholar
  13. 13.
    Jones, L.A.: Sunlight and skylight as determinants of Photographic exposure. I. Luminous density as determined by solar altitude and atmospheric conditions. Journal of the Optical Society of America 38(2), 123–178 (1948)CrossRefGoogle Scholar
  14. 14.
    Jones, L.A.: Sunlight and skylight as determinants of Photographic exposure. II. Scene structure, directional index, photographic efficiency of daylight, safety factors, and evaluation of camera exposure. Journal of the Optical Society of America 39(2), 94–135 (1949)CrossRefGoogle Scholar
  15. 15.
    Jones, L.A., Condit, H.R.: The Brightness Scale of Exterior Scenes and the Computation of Correct Photographic Exposure. Journal of the Optical Society of America 31(11), 651–678 (1941)CrossRefGoogle Scholar
  16. 16.
    Ray, S.F.: Camera Exposure Determination. In: Jacobson, R.E., Ray, S.F., Atteridge, G.G., Axford, N.R. (eds.) The Manual of Photography: Photographic and Digital Imaging. Focal Press (2000)Google Scholar
  17. 17.
    Romero, N.L., Chornet, V.V.G.C.G., Cobos, J.S., Carot, A.A.S.C., Centellas, F.C., Mendez, M.C.: Recovery of descriptive information in images from digital libraries by means of EXIF metadata. Library Hi Tech. 26(2), 302–315 (2008)CrossRefGoogle Scholar
  18. 18.
    Sandnes, F.E.: Geo-Spatial Tagging of Image Collections using Temporal Camera Usage Dynamics. In: The Proceedings of I-SPAN 2009, pp. 160–165 (2009)Google Scholar
  19. 19.
    Sandnes, F.E.: Sorting holiday photos without a GPS: What can we expect from contents-based geo-spatial image tagging? In: Muneesawang, P., Wu, F., Kumazawa, I., Roeksabutr, A., Liao, M., Tang, X. (eds.) PCM 2009. LNCS, vol. 5879, pp. 256–267. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Serrano, N., Savakis, A., Luo, A.: A computationally efficient approach to indoor/outdoor scene classification. In: The Proceedings of 16th International Conference on Pattern Recognition, pp. 146–149 (2002)Google Scholar
  21. 21.
    Szummer, M., Picard, R.W.: Indoor-outdoor image classification. In: The Proceedings of IEEE International Workshop on Content-Based Access of Image and Video Database, pp. 42–51 (1998)Google Scholar
  22. 22.
    Trebi-Ollennu, A., Huntsberger, T., Cheng, Y., Baumgartner, E.T.: Design and analysis of a sun sensor for planetary rover absolute heading detection. IEEE Transactions on Robotics and Automation 17(6), 939–947 (2001)CrossRefGoogle Scholar
  23. 23.
    Zheng, Y.-T., Ming, Z., Yang, S., Adam, H., Buddemeier, U., Bissacco, A., Brucher, F., Chua, T.-S., Neven, H.: Tour the world: Building a web-scale landmark recognition engine. In: The Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), pp. 1085–1092 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Frode Eika Sandnes
    • 1
  1. 1.Faculty of EngineeringOslo University CollegeOsloNorway

Personalised recommendations