A Determined Binary Level Set Method Based on Mean Shift for Contour Tracking

  • Xin Sun
  • Hongxun Yao
  • Zhongqian Sun
  • Bineng Zhong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6297)


Traditional mean shift method has the limitation that could not effectively adjust kernel bandwidth to represent object accurately. To address this problem, in this paper, we propose a novel contour tracking algorithm using a determined binary level set model (DBLSM) based on mean shift procedure. In contrast with other previous work, the computational efficiency is greatly improved due to the simple form of the level set function and the efficient mean shift search. The DBLSM add prior knowledge of the target model to the implementation of curve evolution and ensure a more accurate convergence to the target. Then we use the energy function to measure weight for samples in mean shift framework. Experiment results on several challenging video sequences have verified the proposed algorithm is efficient and effective in many complicated scenes.


Tracking level set model mean shift active contour 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 564–575 (2003)Google Scholar
  2. 2.
    Blake, A., Isard, M.: Active Contours. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Isard, M., Blake, A.: Condensation: conditional density propagation for visual tracking. In: IJCV, pp. 5–28 (1998)Google Scholar
  4. 4.
    Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function, with applications in pattern recognition. In: IEEE IT, pp. 32–40 (1975)Google Scholar
  5. 5.
    Comaniciu, D., Meer, P.: Mean shift analysis and applications. In: IEEE Int. Conf. on Computer Vision, vol. 2, pp. 1197–1203 (1999)Google Scholar
  6. 6.
    Collins, R.: Mean-shift blob tracking through scale space. In: IEEE Conf. on Computer Vision and Pattern Recognition (2003)Google Scholar
  7. 7.
    Bradski, G.: Computer vision face tracking for use in a perceptual user interface. In: IEEE Workshop on Applications of Computer Vision (1998)Google Scholar
  8. 8.
    Yilmaz, A.: Object Tracking by Asymmetric Kernel mean-shift with Automatic Scale and Orientation Selection. In: IEEE Conf. on Computer Vision and Pattern Recognition (2007)Google Scholar
  9. 9.
    Vaswani, N., RoyChowdhury, A., Chellappa, R.: Activity recognition using the dynamics of the configuration of interacting objects. In: IEEE Conference on Computer Vision and Pattern Recognition (2003)Google Scholar
  10. 10.
    Lu, L., Hager, D.G.: A Nonparametric Treatment for Location/Segmentation Based Visual Tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (2007)Google Scholar
  11. 11.
    Chen, Y., Rui, Y., Huang, T.: Jpdaf based hmm for real-time contour tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 543–550 (2001)Google Scholar
  12. 12.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision, 321–331 (1988)Google Scholar
  13. 13.
    Leymarie, F., Levine, M.D.: Tracking deformable objects in the plane using an active contour model. IEEE Trans. Putt. Anal. Machine Intell. 15(6), 617–634 (1993)CrossRefGoogle Scholar
  14. 14.
    Ueda, N., Mase, K.: Tracking moving contours using energy-minimizing elastic contour models. International Journal of Pattern Recognition and Artifical Intelligence 9(3), 465–484 (1995)CrossRefGoogle Scholar
  15. 15.
    Osher, S.J., Sethian, J.A.: Fronts propagation with curvature dependent speed: Algorithms based on hamilton-jacobi formulations. Journal of Computational Physics, 12–49 (1988)Google Scholar
  16. 16.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods, 2nd edn. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  17. 17.
    Chan, T., Vese, L.: Active Contours without Edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)zbMATHCrossRefGoogle Scholar
  18. 18.
    Lie, J., Lysaker, M., Tai, X.C.: A Binary Level Set Model and Some Applications to Mumford-Shah Image Segmentation. IEEE Transactions on Image Processing 15(5), 1171–1181 (2006)CrossRefGoogle Scholar
  19. 19.
    Niethammer, M., Tannenbaum, A.: Dynamic geodesic snakes for visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 660–667 (2004)Google Scholar
  20. 20.
    Paragois, N., Deriche, R.: Geodesic active contorus and level sets for the detection and tracking of moving objects. Transactions on Pattern analysis and Machine Intelligence 22(3), 266–280 (2000)CrossRefGoogle Scholar
  21. 21.
    Yilmaz, A., Li, X., Shah, M.: Contour based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Trans. Patt. Analy. Mach. Intell. 26(11), 1531–1536 (2004)CrossRefGoogle Scholar
  22. 22.
    Jackson, J., Yezzi, A., Soatto, S.: Tracking deformable moving objects under severe occlusions. In: Conf. decision and control (2004)Google Scholar
  23. 23.
    Rathi, Y., Vaswani, N., Tannenbaum, A.: Particle Filtering for Geometric Active Contours with Application to Tracking Moving and Deforming Objects. In: Proc. CVPR (2005)Google Scholar
  24. 24.
    Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Trans. Pattern Analysis and Machine Intelligence 24, 603–619 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Xin Sun
    • 1
  • Hongxun Yao
    • 1
  • Zhongqian Sun
    • 1
  • Bineng Zhong
    • 1
  1. 1.Department of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina

Personalised recommendations