A Novel Metrics Based on Information Bottleneck Principle for Face Retrieval

  • Qiyun Cai
  • Yuchun Fang
  • Jie Luo
  • Wang Dai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6297)


In this paper, we propose a novel metrics for statistical features of images based on Information Bottleneck principle (IBP). Rather than measure the differences among images with classical distance, our model takes the attributes of feature space into consideration. Through evaluating the loss of information of image database, our model is especially designed for the type of features bearing statistical attributes such as histograms, moments etc. The statistical feature is adopted to denote the information of the image database and our metrics measures the distance between two images with the amount of decreased information due to combine them as one category. The proposed metrics is validated in face retrieval with the dominant Local Binary Pattern (LBP) feature. Experimental results on FERET face database show that our model possesses preferable performance.


Face Image Local Binary Pattern Mahalanobis Distance Face Database Probability Mass Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Takacs, B.: Comparing face images using the modified Hausdorff distance. Pattern Recognition 31(12), 1873–1881 (1998)CrossRefGoogle Scholar
  2. 2.
    Takacs, B., Wechsler, H.: Fast Searching of Digital Face Libraries Using Binary Image Metrics. In: 14th International Conference on Pattern Recognition (ICPR 1998), vol. 2, pp. 1235–1237 (1998)Google Scholar
  3. 3.
    Zhang, L., Yang, Q., Bao, T., Vronay, D., Tang, X.: Imlooking: image-based face retrieval in online dating profile search. In: CHI Extended Abstracts, pp. 1577–1582 (2006)Google Scholar
  4. 4.
    Sampat, M.P., Wang, Z., Gupta, S., Bovik, A.C., MarKey, M.K.: Complex Wavelet Structural Similarity: A New Image Similarity Index. IEEE Transaction on Image Processing 18(11), 2385–2401 (2009)CrossRefGoogle Scholar
  5. 5.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution Gray-scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Transactions on PAMI 24, 971–987 (2002)Google Scholar
  6. 6.
    Martinez, A.: Face image retrieval using HMMs. In: IEEE Workshop on Content-Based Access of Image and Video Libraries, pp. 35–39 (1999)Google Scholar
  7. 7.
    Eickeler, S.: Face database retrieval using pseudo 2D hidden Markov models. In: Fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 58–63 (2002)Google Scholar
  8. 8.
    Kamei, T.: Face retrieval by an adaptive Mahalanobis distance using a confidence factor. In: International Conference on Image Processing, vol. 1, pp. I-153–I-156 (2002)Google Scholar
  9. 9.
    Tishby, N., Pereira, F., Bialek, W.: The information bottleneck method. In: Proc. 37th Allerton Conference on Communication and Computation (1999)Google Scholar
  10. 10.
    Slonim, N., Tishby, N.: Agglomerative information bottleneck. In: NIPS (1999)Google Scholar
  11. 11.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley Series in Telecommunications. Wiley, New York (2006)zbMATHGoogle Scholar
  12. 12.
    Pereira, F.C., Tishby, N., Lee, L.: Distributional clustering of English words. In: 30th Annual Meeting of the Association for Computational Linguistics, pp. 183–190 (1993)Google Scholar
  13. 13.
    Slonim, N., Tishby, N.: Document clustering using word clusters via the information bottleneck method. In: Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval, pp. 208–215 (2000)Google Scholar
  14. 14.
    Hsu, W.H., Kennedy, L.S., Chang, S.: Video search reranking via information bottleneck principle. In: Proceedings of the 14th annual ACM international conference on Multimedia, pp. 35–44 (2006)Google Scholar
  15. 15.
    Bardera, A., Rigau, J., Boada, I., Feixas, M., Sbert, M.: Image Segmentation Using Information Bottleneck Method. IEEE Transactions on Image Processing 18(7), 1601–1612 (2009)CrossRefGoogle Scholar
  16. 16.
    Ojala, T., Pietikäinen, M., Harwood, D.: A Comparative Study of Texture Measures with Classification Based on Featured Distributions. Pattern Recognition 29(1), 51–59 (1996)CrossRefGoogle Scholar
  17. 17.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face Recognition with Local Binary Patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Qiyun Cai
    • 1
  • Yuchun Fang
    • 1
  • Jie Luo
    • 1
  • Wang Dai
    • 1
  1. 1.School of Computer Engineering and ScienceShanghai UniversityChina

Personalised recommendations