Advertisement

Efficient Temporal Segmentation for Sports Programs with Special Cases

  • Shiguo Lian
  • Yuan Dong
  • Haila Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6297)

Abstract

In sports programs, there are many special cases making shot boundary detection difficult. Targeted for these special cases, not be considered by existing work, this paper presents a shot boundary detection scheme to detect both cuts and gradual transition efficiently. For shot detection, the algorithm is proposed to resist continuous flashes, camera occlusion or image blur that have not been considered before. For gradual transition detection, a unified method is presented to detect various transitions or special effects, together with an algorithm to reduce the false positives caused by fast camera or object motions. The cut detection and gradual transition detection are implemented serially to avoid repeated detection operations. Compared with existing typical works, the proposed scheme obtains higher correct detection rate and fast detection speed, and is more suitable for sports program analysis.

Keywords

shot boundary detection temporal segmentation gradual transition multimedia analysis special cases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Divakaran, A.: Multimedia Content Analysis: Theory and Applications. Springer, Boston (2009)zbMATHGoogle Scholar
  2. 2.
    Koprinska, I., Carrato, S.: Temporal video segmentation: A survey. Signal Processing: Image Communication 16(5), 477–500 (2001)CrossRefGoogle Scholar
  3. 3.
    Zhang, H.J., Kankanhalli, A., Smoliar, S.W.: Automatic Partitioning of Full-motion Video. Multimedia Systems 1(1), 10–28 (1993)CrossRefGoogle Scholar
  4. 4.
    Hampapur, A., Jain, R., Weymouth, T.: Digital Video Segmentation. In: Proc. ACM Multimedia 1994, San Francisco, CA, pp. 35–364 (October 1994)Google Scholar
  5. 5.
    Nam, J., Tewfik, A.H.: Detection of Gradual Transitions in Video Sequences Using B-Spline Interpolation. IEEE Trans. Multimedia 7(4), 667–679 (2005)CrossRefGoogle Scholar
  6. 6.
    Truong, B.T., Dorai, C., Venkatesh, S.: New enhancements to cut, fade, and dissolve detection processes in video segmentation. In: Proc. ACM Multimedia, pp. 219–227 (2000)Google Scholar
  7. 7.
    Arman, F., Hsu, A., Chiu, M.-Y.: Image Processing on Encoded Video Sequences. Multimedia Systems 1(5), 211–219 (1994)CrossRefGoogle Scholar
  8. 8.
    Joyce, R.A., Liu, B.: Temporal Segmentation of Video Using Frame and Histogram Space. IEEE Trans. Multimedia 8(1), 130–140 (2006)CrossRefGoogle Scholar
  9. 9.
    Zabih, R., Miller, J., Mai, K.: A feature-based algorithm for detecting and classifying production effects. Multimedia Systems 7(2), 119–128 (1999)CrossRefGoogle Scholar
  10. 10.
    Cernekova, Z., Pitas, I., Nikou, C.: Information Theory-Based Shot Cut/Fade Detection and Video Summarization. IEEE Trans. Circuits and Systems for Video Tech. 16(1), 82–91 (2006)CrossRefGoogle Scholar
  11. 11.
    Gao, X., Tang, X.: Unsupervised Video-Shot Segmentation and Model-Free Anchorperson Detection for News Video Story Parsing. IEEE Trans. Circuits and Systems for Video Technology 12(9), 765–776 (2002)CrossRefGoogle Scholar
  12. 12.
    Ngo, C.-W.: A robust dissolve detector by support vector machine. In: Proc. ACM Int. Conf. Multimedia, pp. 283–286 (2003)Google Scholar
  13. 13.
    Han, B., Hu, Y., Wang, G., Wu, W., Yoshigahara, T.: Enhanced Sports Video Shot Boundary Detection Based on Middle Level Features and a Unified Model. IEEE Transactions on Consumer Electronics 53(3), 1168–1176 (2007)CrossRefGoogle Scholar
  14. 14.
    Matsumoto, K., Naito, M., Hoashi, K., Sugaya, F.: SVM-Based Shot Boundary Detection with a Novel Feature. In: Proc. IEEE Int. Conf. Multimedia and Expo., pp. 1837–1840 (2006)Google Scholar
  15. 15.
    Feng, H., Fang, W., Liu, S., Fang, Y.: A New General Framework for Shot Boundary Detection Based on SVM. Proc. IEEE ICNN&B 2, 1112–1117 (2005)Google Scholar
  16. 16.
    Kawai, Y., Sumiyoshi, H., Yagi, N.: Shot boundary detection at TRECVID 2007. In: Proc. of TRECVID Workshop 2007 (2007)Google Scholar
  17. 17.
    Yuan, J., Wang, H., Xiao, L., Zheng, W., Li, J., Lin, F., Zhang, B.: A Formal Study of Shot Boundary Detection. IEEE Transactions on circuits and systems for video technology 17(2), 168–186 (2007)CrossRefGoogle Scholar
  18. 18.
    Ekin, A., Tekalp, A.M., Mehrotra, R.: Automatic Soccer Video Analysis and Summarization. IEEE Transactions on Image Processing 12(7), 796–807 (2003)CrossRefGoogle Scholar
  19. 19.
    Adjeroh, D., Lee, M.C., Banda, N., Kandaswamy, U.: Adaptive Edge-Oriented Shot Boundary Detection. EURASIP Journal on Image and Video Processing 2009, Article ID 859371, 13 pages (2009), doi:10.1155/2009/859371Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Shiguo Lian
    • 1
  • Yuan Dong
    • 2
  • Haila Wang
    • 1
  1. 1.France Telecom (Orange Labs) BeijingBeijingChina
  2. 2.Beijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations