Real Time Tunnel Based Video Summarization Using Direct Shift Collision Detection

  • Siriwat Kasamwattanarote
  • Nagul Cooharojananone
  • Shin’ichi Satoh
  • Rajalida Lipikorn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6297)


This paper presents a real time tunnel based video summarization using direct shift collision detection. The algorithm first detects objects from each video frame and segments them into slices using HOG object detection. Slices are then tracked as a tunnel which describes movement of objects in time space. We then propose direct shift collision detection algorithm (DSCD) to compute a distance for compacting tunnels. Shifting tunnels using DSCD yields the results of multiple activity tunnels appeared simultaneously while they are originally appeared at the different time. In order to solve such problem, our proposed film map generation technique is used to summarize a video which leaves just-in-time renderer to render only necessary frames. The combination of these three proposed methods reveal an overall performance that gives us real time results without losing the main contents of summarized video.


Video summarization Object tracking Tunnel processing HOG Direct Shift Collision Detection Film Map generation JIT renderer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith, M.: Video Skimming and Characterization through the Combination of Image and Language Understanding Techniques. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 1997), Puerto Rico, p. 775 (1997)Google Scholar
  2. 2.
    Petrovic, N., Jojic, N., Huang, T.: Adaptive Video Fast Forward. Multimedia Tools and Applications 26(3), 327–344 (2005)CrossRefGoogle Scholar
  3. 3.
    Kang, H.-W., Chen, X.-Q., Matsushita, Y., Tang, X.: Space-Time Video Montage. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), New York, vol. 2, pp. 1331–1338 (2006)Google Scholar
  4. 4.
    Li, Z., Ishwar, P., Konrad, J.: Video condensation by ribbon carving. IEEE Transactions on Image Processing 18(11), 2572–2583 (2009)CrossRefGoogle Scholar
  5. 5.
    Avidan, S., Shamir, A.: Seam Carving for Content-Aware Image Resizing. ACM Transactions on Graphics 26(3) (2007)Google Scholar
  6. 6.
    Rav-Acha, A., Pritch, Y., Peleg, S.: Making a Long Video Short: Dynamic Video Synopsis. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), pp. 435–441 (2006)Google Scholar
  7. 7.
    Pritch, Y., Rav-Acha, A., Gutman, A., Peleg, S.: Webcam Synopsis: Peeking Around the World. In: IEEE International Conference on Computer Vision (ICCV 2007), pp. 1–8 (2007)Google Scholar
  8. 8.
    Pritch, Y., Rav-Acha, A., Peleg, S.: Nonchronological Video Synopsis and Indexing. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(11), 1971–1984 (2008)CrossRefGoogle Scholar
  9. 9.
    Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893 (2005)Google Scholar
  10. 10.
    Ferman, A., Tekalp, A.: Multiscale content extraction and representation for video indexing. In: Proc. SPIE, pp. 23–31 (1997)Google Scholar
  11. 11.
    Kim, C., Hwang, J.-N.: An integrated scheme for object-based video abstraction. In: ACM international conference on Multimedia, California, pp. 303–311 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Siriwat Kasamwattanarote
    • 1
  • Nagul Cooharojananone
    • 1
  • Shin’ichi Satoh
    • 2
  • Rajalida Lipikorn
    • 1
  1. 1.Department of Mathematics, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  2. 2.National Institute of InformaticsTokyoJapan

Personalised recommendations