A Blind Reference-Free Blockiness Measure

  • Chunhua Chen
  • Jeffrey A. Bloom
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6297)


Some image and video processing algorithms can have the unintended consequence of introducing blocking artifacts into the processed imagery. Measuring blockiness plays an important role in many applications. This paper presents a reference-free blockiness measurement method. For a given image, the absolute difference between horizontally adjacent pixels is computed, normalized, and averaged along each column. A one-dimensional discrete Fourier transform is thereafter employed and a vertical blockiness measure is derived. A horizontal blockiness measure is computed similarly. Finally, a blockiness measure for the given image is formulated by pooling those two directional blockiness measures. The proposed method can accurately assess the blockiness without any a priori knowledge of the block origin and block size; therefore it is a blind measure. Experimental results show the effectiveness of the proposed method. The robustness of the proposed method is also justified.


Perceptual quality assessment blockiness reference-free gradient image discrete Fourier transform 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ISO 12640: Standard Color Image Data (SCID)Google Scholar
  2. 2.
    Wu, H.R., Yuen, M.: A generalized block-edge impairment metric for video coding. IEEE Signal Processing Letters 4(11), 317–320 (1997)CrossRefGoogle Scholar
  3. 3.
    Vlachos, T.: Detection of blocking artifacts in compressed video. IET Electronics Letters 36(13), 1106–1108 (2000)CrossRefGoogle Scholar
  4. 4.
    Tan, K.T., Ghanbari, M.: Frequency domain measurement of blockiness in MPEG-2 coded video. In: International Conference on Image Processing, Vancouver, BC, Canada (2000)Google Scholar
  5. 5.
    Bovik, A.C., Liu, S.: DCT-domain blind measurement of blocking artifacts in DCT-coded images. In: International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, USA (2001)Google Scholar
  6. 6.
    Park, C., Kim, J., Ko, S.: Fast blind measurement of blocking artifacts in both pixel and DCT domains. Journal of Mathematical Imaging and Vision 28(3), 279–284 (2007)CrossRefGoogle Scholar
  7. 7.
    Pan, F., Lin, X., Rahardja, S., Lin, W., Ong, E., Yao, S., Lu, Z., Yang, X.: A locally-adaptive algorithm for measuring blocking artifacts in images and videos. In: International Symposium on Circuits and Systems, Vancouver, BC, Canada (2004)Google Scholar
  8. 8.
    Perra, C., Massidda, F., Giusto, D.D.: Image blockiness evaluation based on Sobel operator. In: International Conference on Image Processing, Genova, Italy (2005)Google Scholar
  9. 9.
    Zhang, H., Zhou, Y., Tian, X.: A weighted Sobel operator-based no-reference blockiness metric. In: Pacific-Asia Workshop on Computational Intelligence and Industrial Application, Wuhan, Hubei, China (2008)Google Scholar
  10. 10.
    Yang, F.Z., Wan, S., Chang, Y.L., Luo, Z.: A no-reference blocking artifact metric for B-DCT video. Journal of Zhejiang University - Science A 7(1), 95–100 (2006)zbMATHCrossRefGoogle Scholar
  11. 11.
    Hillestad, O.I., Babu, R.V., Bopardikar, A.S., Perkis, A.: Video quality evaluation for UMA. In: International Workshop on Image Analysis for Multimedia Interactive Services, Lisboa, Portugal (2004)Google Scholar
  12. 12.
    Wang, Z., Bovik, A.C., Evan, B.L.: Blind measurement of blocking artifacts in images. In: International Conference on Image Processing, Vancouver, BC, Canada (2000)Google Scholar
  13. 13.
    Bailey, D., Carli, M., Farias, M., Mitra, S.: Quality assessment for block-based compressed images and videos with regard to blockiness artifacts. In: Tyrrhenian International Workshop on Digital Communications, Capri, Italy (2002)Google Scholar
  14. 14.
    Pan, F., Lin, X., Rahardja, S., Ong, E.P., Lin, W.S.: Using edge direction information for measuring blocking artifacts of images. Multidimensional Systems and Signal Processing 18(4), 279–308 (2007)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Muijs, R., Kirenko, I.: A no-reference blocking artifact measure for adaptive video processing. In: European Signal Processing Conference, Antalya, Turkey (2005)Google Scholar
  16. 16.
    Liu, H., Heynderickx, I.: A no-reference perceptual blockiness metric. In: International Conference on Acoustics, Speech, and Signal Processing, Las Vegas, NV, USA (2008)Google Scholar
  17. 17.
    Tjoa, S., Lin, W.S., Zhao, H.V., Liu, K.J.R.: Block size forensic analysis in digital images. In: International Conference on Acoustics, Speech, and Signal Processing, Honolulu, HI, USA (2007)Google Scholar
  18. 18.
    Meesters, L., Martens, J.B.: A single-ended blockiness measure for JPEG-coded images. Signal Processing 82(3), 369–387 (2002)zbMATHCrossRefGoogle Scholar
  19. 19.
    Oppenheim, A.V., Schafer, R.W., Buck, J.R.: Discrete-Time Signal Processing. Prentice Hall, Upper Saddle River (1999)Google Scholar
  20. 20.
    Rodgers, J.L., Nicewander, W.A.: Thirteen ways to look at the correlation coefficient. The American Statistician 42(1), 59–66 (1988)CrossRefGoogle Scholar
  21. 21.
    Myers, J.L., Well, A.D.: Research Design and Statistical Analysis, 2nd edn. Routledge, New York (2002)Google Scholar
  22. 22.
    VQEG: Final report from the video quality experts group on the validation of objective quality metrics for video quality assessment,
  23. 23.
    Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: LIVE image quality assessment database release 2 (2005),
  24. 24.
    Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Transactions on Image Processing 15(11), 3440–3451 (2006)CrossRefGoogle Scholar
  25. 25.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)CrossRefGoogle Scholar
  26. 26.
    Seshadrinathan, K., Soundararajan, R., Bovik, A.C., Cormack, L.K.: Study of subjective and objective quality assessment of video. IEEE Transactions on Image Processing 9(6), 1427–1441 (2010) (in press)Google Scholar
  27. 27.
    Seshadrinathan, K., Soundararajan, R., Bovik, A.C., Cormack, L.K.: A subjective study to evaluate video quality assessment algorithms. In: SPIE Proceedings Human Vision and Electronic Imaging (January 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Chunhua Chen
    • 1
  • Jeffrey A. Bloom
    • 1
  1. 1.Dialogic Media LabsEatontown, New JerseyUSA

Personalised recommendations