Skip to main content

High Dimensionality Reduction Using CUR Matrix Decomposition and Auto-encoder for Web Image Classification

  • Conference paper
Advances in Multimedia Information Processing - PCM 2010 (PCM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6298))

Included in the following conference series:

Abstract

Reducing the dimensionality of image with high-dimensional feature plays a significant role in image retrieval and classification. Recently, two methods have been proposed to improve the efficiency and accuracy of dimensionality reduction, one uses CUR matrix decompositions to construct low rank matrix approximations and another approach for dimension reduction trains an auto-encoder with deep architecture to learn low-dimensional codes. In this paper, after above two mentioned methods are respectively utilized to reduce the high-dimensional features of images, we train individual classifiers on both original and reduced feature space for image classification. This paper compares these two approaches with other approaches in image classification. At the same, we also study the effects of the depth of layers on the performance of dimensionality reduction using auto-encoder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hyvrinen, A.: Survey on independent component analysis. Neural Computing Surveys 2, 94–128 (1999)

    Google Scholar 

  2. Wold, S.: Principal component analysis. Chemometrics and Intelligent Laboratory Systems 2(1-3), 37–52 (1987)

    Article  Google Scholar 

  3. Mika, S., Scholkopf, B., Olkopf, B.S., Smola, A., Muller, K.-R., Scholz, M., Ratsch, G.: Kernel pca and de-noising in feature spaces (1999)

    Google Scholar 

  4. Chatfield, C., Collins, A.J.: Introduction to Multivariate Analysis. Chapman and Hall, Boca Raton (1980)

    MATH  Google Scholar 

  5. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  6. Langford, J.C., Tenenbaum, J.B., de Silva, V.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  7. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15, 1373–1396 (2003)

    Article  MATH  Google Scholar 

  8. He, X., Niyogi, P.: Locality preserving projections (2002)

    Google Scholar 

  9. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  10. Drineas, P., Mahoney, M.W., Muthukrishnan, S.: Relative-error cur matrix decompositions. SIAM J. Matrix Anal. Appl. 30(2), 844–881 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mahoneya, M.W., Drineas, P.: Cur matrix decompositions for improved data analysis. PNAS 106(3), 697–702 (2009)

    Article  Google Scholar 

  12. Buciu, I., Nikolaidis, N., Pitas, I.: Non-negative matrix factorization in polynomial feature space. Technical report, Department of Informatics, Aristotle University of Thessaloniki (2007)

    Google Scholar 

  13. Bengio, Y.: Learning deep architectures for ai. Foundations and Trends in Machine Learning 2(2), 1–127 (2009)

    Article  MATH  Google Scholar 

  14. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Computation 18(7), 1527–1554 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. McClelland, J.L., Rumelhart, D.E., the PDP Research Group (eds.): A learning algorithm for boltzmann machines. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, pp. 282–317 (1986)

    Google Scholar 

  16. Chua, T.-S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.-T.: Nus-wide: A real-world web image database from national university of singapore. In: Proc. of ACM Conf. on Image and Video Retrieval (CIVR 2009), Santorini, Greece (2009)

    Google Scholar 

  17. Li, H., Wang, M., Hua, X.-S.: Msra-mm 2.0: A large-scale web multimedia dataset. In: International Conference on Data Mining Workshops, vol. 0, pp. 164–169 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Y., Shao, J. (2010). High Dimensionality Reduction Using CUR Matrix Decomposition and Auto-encoder for Web Image Classification. In: Qiu, G., Lam, K.M., Kiya, H., Xue, XY., Kuo, CC.J., Lew, M.S. (eds) Advances in Multimedia Information Processing - PCM 2010. PCM 2010. Lecture Notes in Computer Science, vol 6298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15696-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15696-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15695-3

  • Online ISBN: 978-3-642-15696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics