Skip to main content

Nonlinear Dynamics, Materials and Integrated Devices for Energy Harvesting in Wearable Sensors

  • Chapter

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 75))

Abstract

Several kinds of energy are available in the environment such as sunlight power, thermal gradients, wind, rain, tides, acoustic, and mechanical vibrations. This energy can be exploited to power electronic devices by means of suitable conversion mechanisms. Specifically, in the case of wearable device the need for onsite energy production emerges for the sake of both battery recharge and powering of sensors and electronics.

In this chapter a review of power harvesting methodology is presented along with two examples of devices implementing advanced energy harvesting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raghunathan, V., Kansal, A., Hsu, J., Friedman, J., Srivastava, M.: Design considera-tions for solar energy harvesting wireless embedded systems. In: IEEE International Symp. on Information Processing in Sensor Network (2005) ISBN 0-7803-9202-7

    Google Scholar 

  2. Sodano, H.A., Inman, D.J., Park, G.: Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries. Journal of Intelligent Material Systems and Structures 16(10), 799–807 (2005)

    Article  Google Scholar 

  3. Torah, R., Jones, P.G., Tudor, M., O’Donnell, T., Roy, S., Beeby, S.: Selfpowered autonomous wireless sensor node using vibration energy harvesting. Meas. Sci. Technol. 19 (2008) ISSN 1361-6501

    Google Scholar 

  4. Anton, S.R., Inman, D.J.: Energy harvesting for unmanned aerial vehicles. In: Proceeding of SPIE (2008)

    Google Scholar 

  5. Kuo, A.D.: Harvesting Energy by Improving the Economy of Human Walking. Science 309, 1686–1687 (2005)

    Article  Google Scholar 

  6. Guyomar, D., Jayet, Y., Petit, L., Lefeuvre, E., Monnier, T., Richard, C., Lallart, M.: Synchronized Switch Harvesting Applied to Self-Powered Smart Systems: Piezoactive Microgenerators for Autonomous Wireless Transmitters. Sensors and Actuators A 138(1), 151–160 (2007)

    Article  Google Scholar 

  7. Vullers, R.J.M., Van Schaijk, R., Doms, I., Van Hoof, C., Mertens, R.: Micropower energy harvesting. Solid-State Electronics 53, 684–693 (2009)

    Article  Google Scholar 

  8. Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications 26, 1131–1144 (2003)

    Article  Google Scholar 

  9. Elfrink, R., Kamel, T.M., Goedbloed, M., Matova, S., Hohlfeld, D., van Andel, Y., van Schaijk, R.: Vibration energy harvesting with aluminum nitride-based piezoelectric devices. J. Micromech. Microeng. 19 (2009)

    Google Scholar 

  10. Lee, B.S., Lin, S.C., Wu, W.J., Wang, X.Y., Chang, P.Z., Lee, C.K.: Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film. J. Micromech. Mi-croeng 19 (2009)

    Google Scholar 

  11. Choi, W.J., Jeon, Y., Jeong, J.H., Sood, R., Kim, S.G.: Energy harvesting MEMS device based on thin film piezoelectric cantilevers. J. Electroceram, 543–548 (2006)

    Google Scholar 

  12. Roundy, S., Wright, P.K., Rabaey, J.M.: Energy Scavenging for Wireless Sensor Networks with Special Focus on Vibrations. Kluwer Academic Publishers, Dordrecht (2003) ISBN 978−1−4020−7663−3

    Google Scholar 

  13. Challa, V.R., Prasad, M.G., Shi, Y., Fisher, F.T.: A vibration energy harvesting de-vice with bidirectional resonance frequency tenability. Smart Mater. Struct. 17 (2008)

    Google Scholar 

  14. Peters, C., Maurath, D., Schock, W., Manoli, Y.: Novel electrically tunable mechani-cal resonator for energy harvesting. In: Proceeding of Power MEMS 2008, pp. 253–256 (2008)

    Google Scholar 

  15. Ferrari, M., Ferrari, V., Guizzetti, M., Marioli, D., Taroni, A.: Piezoelectric multifre-quency energy converter for power harvesting in autonomous Microsystems. Sensors and Actuators A 142, 329–335 (2008)

    Article  Google Scholar 

  16. Sari, I., Balkan, T., Kulah, H.: A Wideband Electromagnetic Micro Power Generator for Wireless Microsystems. In: Proceeding of Transducers, pp. 275–278 (2007)

    Google Scholar 

  17. Mann, B.P., Sims, N.D.: Energy harvesting from the nonlinear oscillations of magnetic levitation. Journal of Sound and Vibration 319, 515–530 (2009)

    Article  Google Scholar 

  18. Lee, D.G., Carman, G.P., Murphy, D., Schulenburg, C.: Novel Micro Vibration Energy Harvesting Device using Frequency Up Conversion. In: Proceeding of Transducers, pp. 871–874 (2007)

    Google Scholar 

  19. Chung, T.K., Lee, D.G., Ujihara, M., Carman, G.P.: Design, Simulation, and Fabrication of a Novel Vibration Based Magnetic Energy Harvesting Device. In: Proceeding of Transducers, pp. 867–870 (2007)

    Google Scholar 

  20. Carlioz, L., Delamare, J., Basrour, S.: Temperature threshold tuning of a thermal harvesting switch. In: Proceeding of Transducers, pp. 1385–1388 (2009)

    Google Scholar 

  21. Wang, Z.L., Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006)

    Article  Google Scholar 

  22. Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear Energy Harvesting. Phys. Rev. Lett. 102, 080601 (2009)

    Article  Google Scholar 

  23. Gammaitoni, L., Neri, I., Vocca, H.: Nonlinear oscillators for vibration energy harvesting. App. Phys. Lett. 94, 164102 (2009)

    Article  Google Scholar 

  24. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Materials & Structures 16(3), R1–R21 (2007)

    Article  Google Scholar 

  25. Duffing, G.: Braunschweig, Erzwungene Schwingungen bei Veränderlicher Eigen-frequenz, p. 134 (1918)

    Google Scholar 

  26. Rahman, M.: Stationary solution for the color-driven Duffing oscillator. Phys. Rev. E Part B 53(6), 6547–6550 Part B (1996)

    Article  Google Scholar 

  27. Dittrich, T., Oelshlagel, B., Hanggi, P.: Driven Tunnelling with Dissipation. Europhysics Letters 22(1), 5–10 (1993)

    Article  Google Scholar 

  28. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Eq. Springer, Berlin (1999)

    Google Scholar 

  29. Ferrari, M., Ferrari, V., Guizzetti, M., Marioli, D.: Piezoelectric Low-Curing-Temperature Ink for Sensors and Power Harvesting. In: Malcovati, Baschirotto, D’Amico, Di Natale (eds.) Sensors and Microsystems, AISEM 2009 Proceedings, vol. 54, pp. 77–81. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  30. Ferrari, M., Ferrari, V., Guizzetti, M., Andò, B., Baglio, S., Trigona, C.: Improved Energy Harvesting from Wideband Vibrations by Nonlinear Piezoelectric Converters. In: Proceedings of the Eurosensors XXIII conference Procedia Chemistry, vol. 1(1), pp. 1203–1206 (August 2009)

    Google Scholar 

  31. Andò, B., Baglio, S., Trigona, C.: Nonlinear MEMS mechanism for Energy harvesting from mechanical vibrations. In: Associazione Italiana Sensori e Microsistemi. Proceeding of AISEM 2010 (2010)

    Google Scholar 

  32. Andò, B., Baglio, S., Dumas, N., Latorre, L., Nouet, P., Trigona, C.: Nonlinear behaviour of a micromachined SOI device for energy harvesting application. In: Proceeding of DTIP 2010, Design, Test, Integration & Packaging of MEMS/MOEMS (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andò, B., Baglio, S., Ferrari, M., Ferrari, V., Gammaitoni, L., Trigona, C. (2010). Nonlinear Dynamics, Materials and Integrated Devices for Energy Harvesting in Wearable Sensors. In: Lay-Ekuakille, A., Mukhopadhyay, S.C. (eds) Wearable and Autonomous Biomedical Devices and Systems for Smart Environment. Lecture Notes in Electrical Engineering, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15687-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15687-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15686-1

  • Online ISBN: 978-3-642-15687-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics