Skip to main content

SPINE-HRV: A BSN-Based Toolkit for Heart Rate Variability Analysis in the Time-Domain

  • Chapter
Wearable and Autonomous Biomedical Devices and Systems for Smart Environment

Abstract

The Heart Rate Variability (HRV) is based on the analysis of the R-peak to R-peak intervals (RR-intervals) of the ECG signal in the time and/or frequency domains. Doctors and psychologists are increasingly recognizing the importance of HRV; in fact, a number of studies have demonstrated that patients with anxiety, phobias and post-traumatic stress disorder consistently show lower HRV, even when not exposed to a trauma related prompt. Importantly, this relationship existed independently of age, gender, trait anxiety, cardio-respiratory fitness, heart rate, blood pressure and respiration rate. In this paper, we present a toolkit based on body sensor networks (BSN) for the time-domain HRV analysis, namely SPINE-HRV (Signal Processing In Node Environment-HRV). The SPINE-HRV is composed of a wearable heart activity monitoring system to continuously acquire the RR-intervals, and a processing application developed using the SPINE framework. The developed system consists of a wireless chest band, a wireless wearable sensor node and a base station. The RR-intervals are processed using the SPINE framework at the base station side through a time-domain analysis of HRV. The analysis provides seven common parameters known in medical literature to help cardiologists in the diagnosis related to several heart diseases. In particular, SPINE-HRV is applied for stress detection of people during activities in their everyday life. Experimentations carried out by monitoring subjects in specific activities have shown the effectiveness of SPINE-HRV in detecting stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stress Eraser, http://stresseraser.com/

  2. Bernardi, L., Wdowczyk-Szulc, J., Valenti, C., Castoldi, S., Passino, C., Spadacini, G., Sleight, P.: Effects of controlled breathing, mental activity and mental stress with or without verbalization on heart rate variability. J Am. Coll. Cardiol. 35(6), 1462–1469 (2000)

    Article  Google Scholar 

  3. Gravina, R., Guerrieri, A., Fortino, G., Bellifemine, F., Giannantonio, R., Sgroi, M.: Development of body sensor network applications using spine. In: IEEE International Conference on Systems, Man and Cybernetics, 2008. SMC 2008, pp. 2810–2815 (October 2008)

    Google Scholar 

  4. Lee, H.B., Kim, J.S., Kim, Y.S., Baek, H.J., Ryu, M.S., Park, K.S.: The relationship between hrv parameters and stressful driving situation in the real road. 198–200

    Google Scholar 

  5. McEwen, B.S.: Protective and Damaging Effects of Stress Mediators. N. Engl. J. Med. 338(3), 171–179 (1998)

    Article  Google Scholar 

  6. Rani, P., Sims, J., Brackin, R., Sarkar, N.: Online stress detection using psychophysiological signals for implicit human-robot cooperation. Robotica 20(6), 673–685 (2002)

    Article  Google Scholar 

  7. Salahuddin, L., Kim, D.: Detection of acute stress by heart rate variability using a prototype mobile ecg sensor, vol. 2, pp. 453–459

    Google Scholar 

  8. Segerstrom, S.C., Miller, G.E.: Psychological stress and the human immune system: A meta-analytic study of 30 years of inquiry

    Google Scholar 

  9. Tarvainen, M.P., Niskanen, J.-P., Lipponen, J.A., Ranta-Aho, P.O., Karjalainen, P.A.: Kubios hrv - a software for advanced heart rate variability analysis

    Google Scholar 

  10. Task Force European Society of Cardiology the North American Society of Pacing. Heart Rate Variability: Standards of Measurement, Physiological Interpretation, and Clinical Use. vol. 93, pp. 1043–1065

    Google Scholar 

  11. Yang, H.-K., Lee, J.-W., Lee, K.-H., Lee, Y.-J., Kim, K.-S., Choi, H.-J., Kim, D.-J.: Application for the wearable heart activity monitoring system: Analysis of the autoomic function of hrv

    Google Scholar 

  12. Goldberger, J.J.: Sympathovagal balance: how should we measure it? Am. J. Physiol (Heart Circ. Physiol. 4) 276, H1273–H1280 (1999)

    Google Scholar 

  13. Al-Hazimi, A., Al-Ama, N., Syiamic, A., Qosti, R., Abdel-Galil, K.: Time domain analysis of heart rate variability in diabetic patients with and without autonomic neuropathy. Annals of Saudi Medicine 22(5-6), 400–402 (2002)

    Google Scholar 

  14. Gravina, R., Guerrieri, A., Fortino, G., Bellifemine, F., Giannantonio, R., Sgroi, M.: Development of body sensor network applications using spine. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2008., October 2008, pp. 2810–2815 (2008)

    Google Scholar 

  15. Lombriser, C., Roggen, D., Stäger, M., Tröoster, G.: Titan: A tiny task network for dynamically reconfigurable heterogeneous sensor networks. In: 15. Fachtagung Kommunikation in Verteilten Systemen (KiVS), Informatik aktuell, pp. 127–138. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. SPINE open source project, http://spine.tilab.com/

  17. Shnayder, V., Chen, B.-r., Lorincz, K., Jones, T.R.F.F., Welsh, M.: Sensor networks for medical care. In: Technical Report TR-08-05, Division of Engineering and Applied Sciences. Harvard University (2005)

    Google Scholar 

  18. Wartzek, T., Vogel, S., Hennig, T., Brodersen, O., Hulsbusch, M., Herzog, M., Leonhardt, S.: Analysis of Heart Rate Variability with an In-Ear Micro-Optic Sensor in View of Motion Artifacts. In: Sixth International Workshop on Wearable and Implantable Body Sensor Networks, pp. 168–172 (2009)

    Google Scholar 

  19. Lomb, N.R.: Least-squares frequency analysis of unequally spaced data. Astrophys Space Sci. 39, 447–462

    Google Scholar 

  20. Wang, C.Z., Zheng, Y.P.: Home-telecare of the elderly living alone using an new designed ear-wearable sensor. In: Proc. 5th Int. Workshop on Wearable and Implantable Body Sensor Networks, Hong Kong, China (2008)

    Google Scholar 

  21. Wang, B., Wang, L., Lin, S.J., Wu, D., Huang, B.Y., Zhang, Y.T., Yin, Q., Chen, W.: A Body Sensor Networks Development Platform for Pervasive Healthcare. In: 3rd International Conference on Bioinformatics and Biomedical Engineering, ICBBE 2009, June 11-13, pp. 1–4 (2009)

    Google Scholar 

  22. Polar HRM2 File Format Description, Polar (2009)

    Google Scholar 

  23. Health Reviser Stress Monitor, http://www.healthreviser.com/content/stress-monitor

  24. emWave Personal Stress Reliever, http://www.myemwave.org/about_emwave_stress.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andreoli, A., Gravina, R., Giannantonio, R., Pierleoni, P., Fortino, G. (2010). SPINE-HRV: A BSN-Based Toolkit for Heart Rate Variability Analysis in the Time-Domain. In: Lay-Ekuakille, A., Mukhopadhyay, S.C. (eds) Wearable and Autonomous Biomedical Devices and Systems for Smart Environment. Lecture Notes in Electrical Engineering, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15687-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15687-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15686-1

  • Online ISBN: 978-3-642-15687-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics