Skip to main content

Sets of Boolean Connectives That Make Argumentation Easier

  • Conference paper
Logics in Artificial Intelligence (JELIA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6341))

Included in the following conference series:

Abstract

Many proposals for logic-based formalizations of argumentation consider an argument as a pair (Φ,α), where the support Φ is understood as a minimal consistent subset of a given knowledge base which has to entail the claim α. In most scenarios, arguments are given in the full language of classical propositional logic which makes reasoning in such frameworks a computationally costly task. For instance, the problem of deciding whether there exists a support for a given claim has been shown to be \(\Sigma^\mathrm{p}_2\)-complete. In order to better understand the sources of complexity (and to identify tractable fragments), we focus on arguments given over formulae in which the allowed connectives are taken from certain sets of Boolean functions. We provide a complexity classification for four different decision problems (existence of a support, checking the validity of an argument, relevance and dispensability) with respect to all possible sets of Boolean functions.

Supported by ANR Algorithms and complexity 07-BLAN-0327-04, WWTF grant ICT 08-028, and DFG grant VO 630/6-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amgoud, L., Cayrol, C.: A model of reasoning based on the production of acceptable arguments. Ann. Math. Artif. Intell. 34, 197–216 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks I: Post’s lattice with applications to complexity theory. SIGACT News 34(4), 38–52 (2003)

    Article  Google Scholar 

  3. Bench-Capon, T., Dunne, P.: Argumentation in artificial intelligence. Artif. Intell. 171(10-15), 619–641 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artif. Intell. 128, 203–235 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press, Cambridge (2008)

    Book  Google Scholar 

  6. Beyersdorff, O., Meier, A., Thomas, M., Vollmer, H.: The complexity of propositional implication. Inf. Process. Lett. 109(18), 1071–1077 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chesñevar, C., Maguitman, A., Loui, R.: Logical models of argument. ACM Comput. Surv. 32, 337–383 (2000)

    Article  Google Scholar 

  8. Creignou, N., Schmidt, J., Thomas, M.: Complexity of propositional abduction for restricted sets of Boolean functions. In: Proc. 12th KR, pp. 8–16. AAAI, Menlo Park (2010)

    Google Scholar 

  9. Dung, P., Kowalski, R., Toni, F.: Dialectical proof procedures for assumption-based admissible argumentation. Artif. Intell. 170, 114–159 (2006)

    Article  MATH  Google Scholar 

  10. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eiter, T., Gottlob, G.: The complexity of logic-based abduction. J. ACM 42(1), 3–42 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. García, A., Simari, G.: Defeasible logic programming: An argumentative approach. Theory and Practice of Logic Programming 4(1), 95–138 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hirsch, R., Gorogiannis, N.: The complexity of the warranted formula problem in propositional argumentation. J. Log. Comput. 20, 481–499 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lewis, H.: Satisfiability problems for propositional calculi. Mathematical Systems Theory 13, 45–53 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  16. Post, E.: The two-valued iterative systems of mathematical logic. Ann. Math. Stud. 5, 1–122 (1941)

    MathSciNet  Google Scholar 

  17. Prakken, H., Vreeswijk, G.: Logical systems for defeasible argumentation. In: Gabbay, D. (ed.) Handbook of Philosophical Logic. Kluwer, Dordrecht (2002)

    Google Scholar 

  18. Papadimitriou, C., Wolfe, D.: The complexity of facets resolved. J. Comput. Syst. Sci. 37(1), 2–13 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Parsons, S., Wooldridge, M., Amgoud, L.: Properties and complexity of some formal inter-agent dialogues. J. Log. Comput. 13(3), 347–376 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rahwan, I., Simari, G. (eds.): Argumentation in Artificial Intelligence. Springer, Heidelberg (2009)

    Google Scholar 

  21. Thomas, M.: The complexity of circumscriptive inference in Post’s lattice. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 290–302. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Creignou, N., Schmidt, J., Thomas, M., Woltran, S. (2010). Sets of Boolean Connectives That Make Argumentation Easier. In: Janhunen, T., Niemelä, I. (eds) Logics in Artificial Intelligence. JELIA 2010. Lecture Notes in Computer Science(), vol 6341. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15675-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15675-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15674-8

  • Online ISBN: 978-3-642-15675-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics