Skip to main content

Using Redundant Constraints for Refinement

  • Conference paper
Automated Technology for Verification and Analysis (ATVA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6252))

Abstract

This paper is concerned with a method for computing reachable sets of linear continuous systems with uncertain input. Such a method is required for verification of hybrid systems and more generally embedded systems with mixed continuous-discrete dynamics. In general, the reachable sets of such systems (except for some linear systems with special eigenstructures) are hard to compute exactly and are thus often over-approximated. The approximation accuracy is important especially when the computed over-approximations do not allow proving a property. In this paper we address the problem of refining the reachable set approximation by adding redundant constraints which allow bounding the reachable sets in some critical directions. We introduce the notion of directional distance which is appropriate for measuring approximation effectiveness with respect to verifying a safety property. We also describe an implementation of the reachability algorithm which favors the constraint-based representation over the vertex-based one and avoids expensive conversions between them. This implementation allowed us to treat systems of much higher dimensions. We finally report some experimental results showing the performance of the refinement algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Althoff, M., Stursberg, O., Buss, M.: Reachability Analysis of Nonlinear Systems with Uncertain Parameters using Conservative Linearization. In: CDC 2008 (2008)

    Google Scholar 

  2. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Asarin, E., Bournez, O., Dang, T., Maler, O.: Approximate reachability analysis of piecewise linear dynamical systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 21–31. Springer, Heidelberg (2000)

    Google Scholar 

  4. Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete and Computational Geometry 8(1), 295–313 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Botchkarev, O., Tripakis, S.: Verification of hybrid systems with linear differential inclusions using ellipsoidal approximations. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 73–88. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Chutinan, A., Krogh, B.H.: Computational Techniques for Hybrid System Verification. IEEE Trans. on Automatic Control 48, 64–75 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cameron, S.A., Culley, R.K.: Determining the Minimum Translational Distance between Two Convex Polyhedra. Proceedings of International Conference on Robotics and Automation 48, 591–596 (1986)

    Google Scholar 

  8. Dang, T.: Verification and Synthesis of Hybrid Systems. PhD Thesis, INPG (2000)

    Google Scholar 

  9. Frehse, G.: PHAVER: Algorithmic Verification of Hybrid Systems past HYTECH. International Journal on Software Tools for Technology Transfer (STTT) 10(3) (June 2008)

    Google Scholar 

  10. Girard, A.: Reachability of Uncertain Linear Systems using Zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Le Guernic, C., Girard, A.: Reachability Analysis of Hybrid Systems Using Support Functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 540–554. Springer, Heidelberg (2009)

    Google Scholar 

  12. Girard, A., Le Guernic, C., Maler, O.: Efficient Computation of Reachable Sets of Linear Time-invariant Systems with Inputs. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 257–271. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HYTECH: A model checker for hybrid systems. Software Tools for Technology Transfer 1(1-2), 110–122 (1997)

    Article  MATH  Google Scholar 

  14. Kalman, R.E., Falb, P.L., Arbib, M.A.: Topics in Mathematical System Theory. McGraw-Hill Book Company, New York (1968)

    MATH  Google Scholar 

  15. Kostoukova, E.K.: State Estimation for dynamic systems via parallelotopes: Optimization and Parallel Computations. Optimization Methods and Software 9, 269–306 (1999)

    Article  MathSciNet  Google Scholar 

  16. Kvasnica, M., Grieder, P., Baotic, M., Morari, M.: Multi-Parametric Toolbox (MPT). In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 448–462. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Kurzhanski, A., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 202–214. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  18. Kurzhanskiy, A., Varaiya, P.: Ellipsoidal Techniques for Reachability Analysis of Discrete-time Linear Systems. IEEE Trans. Automatic Control 52, 26–38 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Larsen, K., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Software Tools for Technology Transfert 1(1-2), 134–152 (1997)

    Article  MATH  Google Scholar 

  20. Lin, M.C., Manocha, D.: Collision and proximity queries. In: Handbook of Discrete and Computational Geometry (2003)

    Google Scholar 

  21. Pappas, G., Lafferriere, G., Yovine, S.: A new class of decidable hybrid systems. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 29–31. Springer, Heidelberg (1999)

    Google Scholar 

  22. Sankaranarayanan, S., Dang, T., Ivancic, F.: Symbolic model checking of hybrid systems using template polyhedra. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 188–202. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Stursberg, O., Krogh, B.H.: Efficient Representation and Computation of Reachable Sets for Hybrid Systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 482–497. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  24. Varaiya, P.: Reach Set computation using Optimal Control. In: KIT Workshop, Verimag, Grenoble, pp. 377–383 (1998)

    Google Scholar 

  25. Yovine, S.: KRONOS: A verification tool for real-time systems. Software Tools for Technology Transfer 1(1-2), 123–133 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Asarin, E., Dang, T., Maler, O., Testylier, R. (2010). Using Redundant Constraints for Refinement. In: Bouajjani, A., Chin, WN. (eds) Automated Technology for Verification and Analysis. ATVA 2010. Lecture Notes in Computer Science, vol 6252. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15643-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15643-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15642-7

  • Online ISBN: 978-3-642-15643-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics