Advertisement

Legendrian Grid Number One Knots and Augmentations of Their Differential Algebras

  • Joan E. LicataEmail author
Chapter
  • 1.8k Downloads
Part of the Contributions in Mathematical and Computational Sciences book series (CMCS, volume 1)

Abstract

In this article we study the differential graded algebra (DGA) invariant associated to Legendrian knots in tight lens spaces. Given a grid number one diagram for a knot in L(p,q), we show how to construct a special Lagrangian diagram suitable for computing the DGA invariant for the Legendrian knot specified by the diagram. We then specialize to L(p,p−1) and show that for two families of knots, the existence of an augmentation of the DGA depends solely on the value of p.

Keywords

South Pole Lens Space Boundary Word Grid Number Differential Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BG08]
    Baker, K.L., Grigsby, J.E.: Grid diagrams and legendrian lens space links. arXiv:0804.3048v1 (2008)
  2. [BGH07]
    Baker, K.L., Grigsby, J.E., Hedden, M.: Grid diagrams for lens spaces and combinatorial knot Floer homology. arXiv:0710.0359v2 (2007)
  3. [Che02]
    Chekanov, Y.: Differential algebra of Legendrian links. Invent. Math. 150(3), 441–483 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  4. [EGH00]
    Eliashberg, Y., Givental, A., Hofer, H.: Introduction to symplectic field theory. Geom. Funct. Anal. 560–673 (2000). (Special Volume, Part II), GAFA 2000 (Tel Aviv, 1999) Google Scholar
  5. [FI04]
    Fuchs, D.: Chekanov-Eliashberg invariant of Legendrian knots: existence of augmentations. J. Geom. Phys. 47(1), 43–65 (2003) zbMATHMathSciNetGoogle Scholar
  6. [Fuc03]
    Fuchs, D., Ishkhanov, T.: Invariants of Legendrian knots and decompositions of front diagrams. Mosc. Math. J. 4(3), 707–717, 783 (2004) zbMATHMathSciNetGoogle Scholar
  7. [Gei08]
    Geiges, H.: An Introduction to Contact Topology. Cambridge Studies in Advanced Mathematics, vol. 109, p. 440. Cambridge University Press, Cambridge (2008) zbMATHGoogle Scholar
  8. [GS99]
    Gompf, R.E., Stipsicz, A.I.: 4-Manifolds and Kirby Calculus. Graduate Studies in Mathematics, vol. 20, p. 558. Am. Math. Soc., Providence (1999) zbMATHGoogle Scholar
  9. [Hed07]
    Hedden, M.: On Floer homology and the Berge conjecture on knots admitting lens space surgeries. arXiv:0710.0357 (2007)
  10. [Lic09]
    Licata, J.E.: Invariants for Legendrian knots in lens spaces. Commun. Contemp. Math. (2011, to appear). arXiv:0901.4226
  11. [Ng03]
    Ng, L.L.: Computable Legendrian invariants. Topology 42(1), 55–82 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  12. [NS06]
    Ng, L.L., Sabloff, J.M.: The correspondence between augmentations and rulings for Legendrian knots. Pac. J. Math. 224(1), 141–150 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  13. [NT04]
    Ng, L.L., Traynor, L.: Legendrian solid-torus links. J. Symplectic Geom. 2(3), 411–443 (2004) zbMATHMathSciNetGoogle Scholar
  14. [OST08]
    Ozsváth, P., Szabó, Z., Thurston, D.: Legendrian knots, transverse knots and combinatorial Floer homology. Geom. Topol. 12(2), 941–980 (2008). doi: 10.2140/gt.2008.12.941 zbMATHCrossRefMathSciNetGoogle Scholar
  15. [Ras07]
    Rasmussen, J.A.: Lens space surgeries and L-space homology spheres. arXiv:0710.2531 (2007)
  16. [Sab03]
    Sabloff, J.M.: Invariants of Legendrian knots in circle bundles. Commun. Contemp. Math. 5(4), 569–627 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  17. [Sab05]
    Sabloff, J.M.: Augmentations and rulings of Legendrian knots. Int. Math. Res. Not. (19), 1157–1180 (2005) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations