On Two Categorifications of the Arrow Polynomial for Virtual Knots

  • Heather Ann DyeEmail author
  • Louis Hirsch Kauffman
  • Vassily Olegovich Manturov
Part of the Contributions in Mathematical and Computational Sciences book series (CMCS, volume 1)


Two categorifications are given for the arrow polynomial, an extension of the Kauffman bracket polynomial for virtual knots. The arrow polynomial extends the bracket polynomial to infinitely many variables, each variable corresponding to an integer arrow number calculated from each loop in an oriented state summation for the bracket. The categorifications are based on new gradings associated with these arrow numbers, and give homology theories associated with oriented virtual knots and links via extra structure on the Khovanov chain complex. Applications are given to the estimation of virtual crossing number and surface genus of virtual knots and links.


Partial Differential Virtual Link Jones Polynomial Circle Graph Reidemeister Move 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [APS]
    Asaeda, M.M., Przytycki, J.H., Sikora, A.S.: Categorification of the Kauffman bracket skein module of I-bundles over surfaces. Algebraic Geom. Topol. 4, 1177–1210 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  2. [BN02]
    Bar-Natan, D.: On Khovanov’s categorification of the Jones polynomial. Algebraic Geom. Topol. 2(16), 337–370 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  3. [BN05]
    Bar-Natan, D.: Khovanov’s homology for tangles and cobordisms. Geom. Topol. 9, 1443–1499 (2005). arXiv:math.GT/0410495 zbMATHCrossRefMathSciNetGoogle Scholar
  4. [Bou08]
    Bourgoin, M.O.: Twisted link theory. Algebraic Geom. Topol. 8(3), 1249–1279 (2008). arXiv:math.GT/0608233 zbMATHCrossRefMathSciNetGoogle Scholar
  5. [Caprau]
    Caprau, C.: The universal sl(2) cohomology via webs and foams. arXiv:0802.2848v2 [math.GT]
  6. [CK09]
    Champanerkar, A., Kofman, I.: Spanning trees and Khovanov homology. Proc. Am. Math. Soc. 137, 2157–2167 (2009). arXiv:math.GT/0607510 zbMATHCrossRefMathSciNetGoogle Scholar
  7. [CMW]
    Clark, C., Morrison, S., Walker, K.: Fixing the functoriality of Khovanov homology. arXiv:math.GT/0701339v2 (2007)
  8. [Dro91]
    Drobotukhina, Yu.V.: An Analogue of the Jones-Kauffman polynomial for links in R 3 and a generalisation of the Kauffman-Murasugi Theorem. Algebra Anal. 2(3), 613–630 (1991) zbMATHMathSciNetGoogle Scholar
  9. [DK09]
    Dye, H., Kauffman, L.H.: Virtual crossing number and the arrow polynomial. J. Knot Theory Ramif. 18(10), 1335–1357 (2009). arXiv:0810.3858 [math.GT] zbMATHCrossRefMathSciNetGoogle Scholar
  10. [FKM05]
    Fenn, R.A., Kauffman, L.H., Manturov, V.O.: Virtual knots: unsolved problems. In: Proceedings of the Conference “Knots in Poland-2003”. Fundamenta Mathematicae, vol. 188, pp. 293–323 (2005) Google Scholar
  11. [Fom91]
    Fomenko, A.T.: The theory of multidimensional integrable hamiltonian systems (with arbitrary many degrees of freedom). Molecular table of all integrable systems with two degrees of freedom. Adv. Sov. Math. 6, 1–35 (1991) MathSciNetGoogle Scholar
  12. [MMO00]
    Goussarov, M., Polyak, M., Viro, O.: Finite type invariants of classical and virtual links. Topology 39, 1045–1068 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  13. [Kau87]
    Kauffman, L.H.: State models and the Jones polynomial. Topology 26, 395–407 (1987) zbMATHCrossRefMathSciNetGoogle Scholar
  14. [Kau99]
    Kauffman, L.H.: Virtual knot theory. Eur. J. Comb. 20(7), 662–690 (1999) CrossRefMathSciNetGoogle Scholar
  15. [Kau04]
    Kauffman, L.H.: A self-linking invariant of virtual knots. Fund. Math. 184, 135–158 (2004). arXiv:math.GT/0405049 zbMATHCrossRefMathSciNetGoogle Scholar
  16. [Kau09]
    Kauffman, L.H.: An extended bracket polynomial for virtual knots and links. J. Knot Theory Ramif. 18(10), 1369–1422 (2009). arXiv:0712.2546 [math.GT] zbMATHCrossRefMathSciNetGoogle Scholar
  17. [KD05]
    Kauffman, L.H., Dye, H. A.: Minimal surface representations of virtual knots and links. Algebraic Geom. Topol. 5, 509–535 (2005). arXiv:math.GT/0401035 zbMATHCrossRefMathSciNetGoogle Scholar
  18. [Kho97]
    Khovanov, M.: A categorification of the Jones polynomial. Duke Math. J. 101(3), 359–426 (1997) CrossRefMathSciNetGoogle Scholar
  19. [Kho06]
    Khovanov, M.: Link homology and Frobenius extensions. Fundam. Math. 190, 179–190 (2006). arXiv:math.GT/0411447 zbMATHCrossRefMathSciNetGoogle Scholar
  20. [KR08]
    Khovanov, M., Rozansky, L.: Matrix factorizations and link homology. Fundam. Math. 199(1), 1–91 (2008). arXiv:math.GT/0401268 zbMATHCrossRefMathSciNetGoogle Scholar
  21. [Lee03]
    Lee, E.S.: On Khovanov invariant for alternating links. arXiv:math.GT/0210213 (2003)
  22. [Man03]
    Manturov, V.O.: Kauffman–like polynomial and curves in 2-surfaces. J. Knot Theory Ramif. 12(8), 1145–1153 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  23. [Man04]
    Manturov, V.O.: The Khovanov polynomial for Virtual Knots. Russ. Acad. Sci. Dokl. 398(1), 11–15 (2004) MathSciNetGoogle Scholar
  24. [Man05a]
    Manturov, V.O.: Minimal diagrams of classical knots. arXiv:math.GT/0501510 (2005)
  25. [Man05b]
    Manturov, V.O.: Teoriya Uzlov. RCD, M.-Izhevsk (2005). (Knot Theory, In Russian) Google Scholar
  26. [Man05c]
    Manturov, V.O.: The Khovanov complex for virtual links. Fundam. Appl. Math. 11(4), 127–152 (2005) Google Scholar
  27. [Man06]
    Manturov, V.O.: The Khovanov complex and minimal knot diagrams. Russ. Acad. Sci. Dokl. 406(3), 308–311 (2006) MathSciNetGoogle Scholar
  28. [Man07a]
    Manturov, V.O.: Additional gradings in the Khovanov complex for thickened surfaces. Dokl. Math. 77, 368–370 (2007) CrossRefGoogle Scholar
  29. [Man07b]
    Manturov, V.O.: Khovanov homology for virtual knots with arbitrary coefficients. Russ. Acad. Sci. Izv. 71(5), 111–148 (2007) MathSciNetGoogle Scholar
  30. [Man08]
    Manturov, V.O.: Additional gradings in Khovanov homology. In: Proceedings of the Conference “Topology and Physics. Dedicated to the Memory of Xiao-Song Lin”. Nankai Tracts in Mathematics, pp. 266–300. World Scientific, Singapore (2008) Google Scholar
  31. [Man09b]
    Manturov, V.O.: On free knots and links. arXiv:0902.0127 [math.GT] (2009)
  32. [Man09a]
    Manturov, V.O.: On free Knots. arXiv:0901.2214 [math.GT] (2009)
  33. [Miy06]
    Miyazawa, Y.: Magnetic Graphs and an Invariant for Virtual Links. J. Knot Theory Ramif. 15(10), 1319–1334 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  34. [Miy08]
    Miyazawa, Y.: A multi-variable polynomial invariant for virtual knots and links. J. Knot Theory Ramif. 17(11), 1311–1326 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  35. [ORS07]
    Ozsváth, P., Rasmussen, J., Szabó, Z.: Odd Khovanov homology. arXiv:0710.4300 [math-qa] (2007)
  36. [Ras04]
    Rasmussen, J.A.: Khovanov homology and the slice genus. arXiv:math.GT/0402131 (2004)
  37. [Tur87]
    Turaev, V.G.: A simple proof of the Murasugi and Kauffman theorems on alternating links. Enseign. Math. (2), 33(3–4), 203–225 (1987) zbMATHMathSciNetGoogle Scholar
  38. [Viro2]
    Viro, O.: Khovanov homology, its definitions and ramifications. Fundam. Math. 184, 317–342 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  39. [Viro1]
    Viro, O.: Remarks on definition of Khovanov homology. math.GT/0202199

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Heather Ann Dye
    • 1
    Email author
  • Louis Hirsch Kauffman
    • 2
  • Vassily Olegovich Manturov
    • 3
  1. 1.Division of Science and MathematicsMcKendree UniversityLebanonUSA
  2. 2.Department of Mathematics, Statistics, and Computer ScienceUniversity of Illinois at ChicagoChicagoUSA
  3. 3.People’s Friendship University of RussiaMoscowRussia

Personalised recommendations