A Survey of Twisted Alexander Polynomials

  • Stefan FriedlEmail author
  • Stefano Vidussi
Part of the Contributions in Mathematical and Computational Sciences book series (CMCS, volume 1)


We give a short introduction to the theory of twisted Alexander polynomials of a 3-manifold associated to a representation of its fundamental group. We summarize their formal properties and we explain their relationship to twisted Reidemeister torsion. We then give a survey of the many applications of twisted invariants to the study of topological problems. We conclude with a short summary of the theory of higher order Alexander polynomials.


Conjugacy Class Free Abelian Group Floer Homology Alexander Polynomial Seifert Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ag08]
    Agol, I.: Criteria for virtual fibering. J. Topol. 1, 269–284 (2008) zbMATHMathSciNetCrossRefGoogle Scholar
  2. [Bl57]
    Blanchfield, R.: Intersection theory of manifolds with operators with applications to knot theory. Ann. Math. (2) 65, 340–356 (1957) MathSciNetCrossRefGoogle Scholar
  3. [BF08]
    Boden, H., Friedl, S.: Metabelian SL(n,ℂ) representations of knot groups. Pac. J. Math. 238, 7–25 (2008) zbMATHMathSciNetCrossRefGoogle Scholar
  4. [Bu67]
    Burde, G.: Darstellungen von Knotengruppen. Math. Ann. 173, 24–33 (1967) zbMATHMathSciNetCrossRefGoogle Scholar
  5. [CG86]
    Casson, A., Gordon, C.: Cobordism of classical knots. In: A la Recherche de la Topologie Perdue. Progr. Math., vol. 62, 181–199. Birkhäuser, Boston (1986) Google Scholar
  6. [Ch03]
    Cha, J.: Fibred knots and twisted Alexander invariants. Trans. Am. Math. Soc. 355, 4187–4200 (2003) zbMATHMathSciNetCrossRefGoogle Scholar
  7. [Ch10]
    Cha, J.C.: Link concordance, homology cobordism, and Hirzebruch-type defects from iterated p-covers. J. Eur. Math. Soc. 12, 555–610 (2010) zbMATHMathSciNetCrossRefGoogle Scholar
  8. [CF10]
    Cha, J., Friedl, S.: Twisted Reidemeister torsion and link concordance. Preprint (2010) Google Scholar
  9. [Chp74]
    Chapman, T.A.: Topological invariance of Whitehead torsion. Am. J. Math. 96(3), 488–497 (1974) zbMATHCrossRefGoogle Scholar
  10. [Co04]
    Cochran, T.: Noncommutative knot theory. Algebraic Geom. Topol. 4, 347–398 (2004) zbMATHMathSciNetCrossRefGoogle Scholar
  11. [CT08]
    Cochran, T., Kim, T.: Higher-order Alexander invariants and filtrations of the knot concordance group. Trans. Am. Math. Soc. 360(3), 1407–1441 (2008) zbMATHMathSciNetCrossRefGoogle Scholar
  12. [COT03]
    Cochran, T., Orr, K., Teichner, P.: Knot concordance, Whitney towers and L 2-signatures. Ann. Math. (2) 157(2), 433–519 (2003) zbMATHMathSciNetCrossRefGoogle Scholar
  13. [CFT09]
    Cochran, T., Friedl, S., Teichner, P.: New constructions of slice links. Comment. Math. Helv. 84(3), 617–638 (2009) zbMATHMathSciNetCrossRefGoogle Scholar
  14. [CF07]
    Cogolludo, A., Florens, V.: Twisted Alexander polynomials of plane algebraic curves. J. Lond. Math. Soc. (2) 76(1), 105–121 (2007) zbMATHMathSciNetCrossRefGoogle Scholar
  15. [CS08]
    Cohen, D., Suciu, A.: The boundary manifold of a complex line arrangement. Geom. Topol. Monogr. 13, 105–146 (2008) MathSciNetCrossRefGoogle Scholar
  16. [CF77]
    Crowell, R., Fox, R.: Introduction to Knot Theory. Graduate Texts in Mathematics, vol. 57. Springer, New York (1977) zbMATHGoogle Scholar
  17. [dRh68]
    de Rham, G.: Introduction aux polynômes d’un nœud. Enseign. Math. (2) 13, 187–194 (1968) Google Scholar
  18. [DLMSY03]
    Dodziuk, J., Linnell, P., Mathai, V., Schick, T., Yates, S.: Approximating L 2-invariants, and the Atiyah conjecture. Commun. Pure Appl. Math. 56(7), 839–873 (2003). Preprint Series SFB 478 Münster, Germany zbMATHMathSciNetCrossRefGoogle Scholar
  19. [Do96]
    Donaldson, S.: Symplectic submanifolds and almost-complex geometry. J. Differ. Geom. 44, 666–705 (1996) zbMATHMathSciNetGoogle Scholar
  20. [Do99]
    Donaldson, S.: Topological field theories and formula of Casson Meng-Taubes. Geom. Topol. Monogr. 2, 87–102 (1999). Proceedings of the Kirbyfest MathSciNetCrossRefGoogle Scholar
  21. [DY09]
    Dubois, J., Yamaguchi, Y.: Multivariable Twisted Alexander Polynomial for hyperbolic three-manifolds with boundary. Preprint (2010) Google Scholar
  22. [DHY09]
    Dubois, J., Huynh, V., Yamaguchi, Y.: Non-abelian Reidemeister torsion for twist knots. J. Knot Theory Ramif. 18(3), 303–341 (2009) zbMATHMathSciNetCrossRefGoogle Scholar
  23. [Du01]
    Dunfield, N.: Alexander and Thurston norm of fibered 3-manifolds. Pac. J. Math. 200(1), 43–58 (2001) zbMATHMathSciNetCrossRefGoogle Scholar
  24. [DFJ10]
    Dunfield, N., Friedl, S., Jackson, N.: Twisted Alexander polynomials of hyperbolic knots (2010, in preparation) Google Scholar
  25. [Ei07]
    Eisermann, M.: Knot colouring polynomials. Pac. J. Math. 231, 305–336 (2007) zbMATHMathSciNetCrossRefGoogle Scholar
  26. [El08]
    Elliot, R.: Alexander polynomials of periodic knots: a homological proof and twisted extension. Princeton Undergraduate Thesis (2008) Google Scholar
  27. [Fo56]
    Fox, R.H.: Free differential calculus III. Ann. Math. 64, 407–419 (1956) CrossRefGoogle Scholar
  28. [Fo62]
    Fox, R.H.: A quick trip through knot theory. In: Topology of Three Manifolds and Related Topics, pp. 120–167. Prentice Hall, New York (1962) Google Scholar
  29. [Fo70]
    Fox, R.H.: Metacyclic invariants of knots and links. Can. J. Math. 22, 193–207 (1970) zbMATHGoogle Scholar
  30. [FM66]
    Fox, R.H., Milnor, J.W.: Singularities of 2-spheres in 4-space and cobordism of knots. Osaka J. Math. 3, 257–267 (1966) zbMATHMathSciNetGoogle Scholar
  31. [Fr03]
    Friedl, S.: Eta invariants as sliceness obstructions and their relation to Casson Gordon invariants. Thesis, Brandeis University (2003) Google Scholar
  32. [Fr04]
    Friedl, S.: Eta invariants as sliceness obstructions and their relation to Casson-Gordon invariants. Algebraic Geom. Topol. 4, 893–934 (2004) zbMATHMathSciNetCrossRefGoogle Scholar
  33. [Fr07]
    Friedl, S.: Reidemeister torsion, the Thurston norm and Harvey’s invariants. Pac. J. Math. 230, 271–296 (2007) zbMATHMathSciNetCrossRefGoogle Scholar
  34. [Fr09]
    Friedl, S.: KnotTwister. (2009)
  35. [FH07]
    Friedl, S., Harvey, S.: Non-commutative multivariable Reidemeister torsion and the Thurston norm. Algebraic. Geom. Topol. 7, 755–777 (2007) zbMATHMathSciNetCrossRefGoogle Scholar
  36. [FK06]
    Friedl, S., Kim, T.: Thurston norm, fibered manifolds and twisted Alexander polynomials. Topology 45, 929–953 (2006) zbMATHMathSciNetCrossRefGoogle Scholar
  37. [FK08a]
    Friedl, S., Kim, T.: Twisted Alexander norms give lower bounds on the Thurston norm. Trans. Am. Math. Soc. 360, 4597–4618 (2008) zbMATHMathSciNetCrossRefGoogle Scholar
  38. [FK08b]
    Friedl, S., Kim, T.: The parity of the Cochran-Harvey invariants of 3-manifolds. Trans. Am. Math. Soc. 360, 2909–2922 (2008) zbMATHMathSciNetCrossRefGoogle Scholar
  39. [FT05]
    Friedl, S., Teichner, P.: New topologically slice knots. Geom. Topol. 9(48), 2129–2158 (2005) zbMATHMathSciNetCrossRefGoogle Scholar
  40. [FV06]
    Friedl, S., Vidussi, S.: Symplectic S 1×N 3 and subgroup separability. Oberwolfach Rep. 3(3), 2166–2168 (2006) Google Scholar
  41. [FV07b]
    Friedl, S., Vidussi, S.: Symplectic 4-manifolds with a free circle action. Preprint (2007) Google Scholar
  42. [FV07a]
    Friedl, S., Vidussi, S.: Nontrivial Alexander polynomials of knots and links. Bull. Lond. Math. Soc. 39, 614–6222 (2007) zbMATHMathSciNetCrossRefGoogle Scholar
  43. [FV08a]
    Friedl, S., Vidussi, S.: Twisted Alexander polynomials and symplectic structures. Am. J. Math. 130(2), 455–484 (2008) zbMATHMathSciNetCrossRefGoogle Scholar
  44. [FV08b]
    Friedl, S., Vidussi, S.: Symplectic S 1×N 3, surface subgroup separability, and vanishing Thurston norm. J. Am. Math. Soc. 21, 597–610 (2008) zbMATHMathSciNetCrossRefGoogle Scholar
  45. [FV08c]
    Friedl, S., Vidussi, S.: Twisted Alexander polynomials detect fibered 3-manifolds. Preprint (2008) Google Scholar
  46. [FV09]
    Friedl, S., Vidussi, S.: Twisted Alexander polynomials, symplectic 4-manifolds and surfaces of minimal complexity. Banach Cent. Publ. 85, 43–57 (2009) MathSciNetCrossRefGoogle Scholar
  47. [FV10]
    Friedl, S., Vidussi, S.: Twisted Alexander polynomials and fibered 3-manifolds. In: Proceedings of the Georgia International Topology Conference (2010, to be published) Google Scholar
  48. [FLM09]
    Friedl, S., Leidy, C., Maxim, L.: L 2-Betti numbers of plane algebraic curves. Michigan Math. J. 58(2), 291–301 (2009) MathSciNetCrossRefGoogle Scholar
  49. [GL83]
    Gilmer, P., Livingston, C.: On embedding 3-manifolds in 4-space. Topology 22(3), 241–252 (1983) zbMATHMathSciNetCrossRefGoogle Scholar
  50. [GM03]
    Goda, H., Morifuji, T.: Twisted Alexander polynomial for SL(2,ℂ)-representations and fibered knots. C. R. Math. Acad. Sci. Soc. R. Can. 25(4), 97–101 (2003) zbMATHMathSciNetGoogle Scholar
  51. [GP05]
    Goda, H., Pajitnov, A.: Twisted Novikov homology and circle-valued Morse theory for knots and links. Osaka J. Math. 42(3) (2005) Google Scholar
  52. [GS08]
    Goda, H., Sakasai, T.: Homology cylinders in knot theory. Preprint (2008) Google Scholar
  53. [GKM05]
    Goda, H., Kitano, T., Morifuji, T.: Reidemeister torsion, twisted Alexander polynomial and fibred knots. Comment. Math. Helv. 80(1), 51–61 (2005) zbMATHMathSciNetCrossRefGoogle Scholar
  54. [GS91]
    González-Acuña, F., Short, H.: Cyclic branched coverings of knots and homology spheres. Rev. Math. 4, 97–120 (1991) zbMATHGoogle Scholar
  55. [Go72]
    Gordon, C.McA.: Knots whose branched cyclic coverings have periodic homology. Trans. Am. Math. Soc. 168, 357–370 (1972) zbMATHCrossRefGoogle Scholar
  56. [Go78]
    Gordon, C.McA.: Some aspects of classical knot theory. In: Knot Theory (Proc. Sem., Plans-sur-Bex, 1977). Lecture Notes in Math., vol. 685, pp. 1–65. Springer, Berlin (1978) Google Scholar
  57. [GL89]
    Gordon, C.McA., Luecke, J.: Knots are determined by their complements. J. Am. Math. Soc. 2(2) (1989), 371–415 zbMATHMathSciNetGoogle Scholar
  58. [Hat79]
    Hartley, R.: Metabelian representations of knot groups. Pac. J. Math. 82, 93–104 (1979) zbMATHMathSciNetGoogle Scholar
  59. [Hat80]
    Hartley, R.: Invertible amphicheiral knots. Math. Ann. 252(2), 103–109 (1979/80) MathSciNetCrossRefGoogle Scholar
  60. [Hat81]
    Hartley, R.: Knots with free period. Can. J. Math. 33(1), 91–102 (1981) zbMATHMathSciNetGoogle Scholar
  61. [HK79]
    Hartley, R., Kawauchi, A.: Polynomials of amphicheiral knots. Math. Ann. 243(1), 63–70 (1979) zbMATHMathSciNetCrossRefGoogle Scholar
  62. [Ha05]
    Harvey, S.: Higher-order polynomial invariants of 3-manifolds giving lower bounds for the Thurston norm. Topology 44, 895–945 (2005) zbMATHMathSciNetCrossRefGoogle Scholar
  63. [Ha06]
    Harvey, S.: Monotonicity of degrees of generalized Alexander polynomials of groups and 3-manifolds. Math. Proc. Camb. Philos. Soc. 140(03), 431–450 (2006) zbMATHMathSciNetCrossRefGoogle Scholar
  64. [Ha08]
    Harvey, S.: Homology cobordism invariants and the Cochran-Orr-Teichner filtration of the link concordance group. Geom. Topol. 12, 387–430 (2008) zbMATHMathSciNetCrossRefGoogle Scholar
  65. [HKL10]
    Herald, C., Kirk, P., Livingston, C.: Metabelian representations, twisted Alexander polynomials, knot slicing, and mutation. Math. Z 265(4), 925–949 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  66. [HP05]
    Heusener, M., Porti, J.: Deformations of reducible representations of 3-manifold groups into PSL 2(ℂ). Algebraic Geom. Topol. 5, 965–997 (2005) zbMATHMathSciNetCrossRefGoogle Scholar
  67. [Hi40]
    Higman, G.: The units of group-rings. Proc. Lond. Math. Soc. (2) 46, 231–248 (1940) zbMATHMathSciNetCrossRefGoogle Scholar
  68. [Hi02]
    Hillman, J.: Algebraic Invariants of Links. Series on Knots and Everything, vol. 32. World Scientific, River Edge (2002) zbMATHGoogle Scholar
  69. [HLN06]
    Hillman, J.A., Livingston, C., Naik, S.: Twisted Alexander polynomials of periodic knots. Algebraic Geom. Topol. 6, 145–169 (2006) zbMATHMathSciNetCrossRefGoogle Scholar
  70. [HSW09]
    Hillman, J., Silver, D., Williams, S.: On reciprocality of twisted Alexander invariants. Preprint (2009) Google Scholar
  71. [HM08]
    Hirasawa, M., Murasugi, K.: Evaluations of the twisted Alexander polynomials of 2-bridge knots at ±1. Preprint (2008) Google Scholar
  72. [HM09a]
    Hirasawa, M., Murasugi, K.: Twisted Alexander polynomials of 2-bridge knots associated to metacyclic representations. Preprint (2009) Google Scholar
  73. [HM09b]
    Hirasawa, M., Murasugi, K.: Twisted Alexander polynomials of 2-bridge knots associated to metabelian representations. Preprint (2009) Google Scholar
  74. [HKMS09]
    Horie, K., Kitano, T., Matsumoto, M., Suzuki, M.: A partial order on the set of prime knots with up to eleven crossings. Preprint (2009) Google Scholar
  75. [HL07]
    Huynh, V.Q., Le, T.: On the twisted Alexander polynomial and the A-polynomial of 2-bridge knots. Preprint (2007) Google Scholar
  76. [HL08]
    Huynh, V.Q., Le, T.: Twisted Alexander polynomial of links in the projective space. J. Knot Theory Ramif. 17(4), 411–438 (2008) zbMATHMathSciNetCrossRefGoogle Scholar
  77. [In00]
    Indurskis, G.: Das getwistete Alexanderpolynom, Verallgemeinerung einer klassischen Knoteninvariante. Diploma thesis (2000) Google Scholar
  78. [Je08]
    Jebali, H.: Module d’Alexander et représentations métabéliennes. Ann. Faculté Sci. Toulouse, Sér. 6 17(4), 751–764 (2008) zbMATHMathSciNetGoogle Scholar
  79. [JW93]
    Jiang, B., Wang, S.: Twisted topological invariants associated with representations. In: Topics in Knot Theory (Erzurum, 1992). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 399, pp. 211–227. Kluwer Academic, Dordrecht (1993) Google Scholar
  80. [Ka06]
    Kadokami, T.: Reidemeister torsion and lens surgeries on knots in homology 3-spheres. I. Osaka J. Math. 43, 823–837 (2006) zbMATHMathSciNetGoogle Scholar
  81. [Ka07]
    Kadokami, T.: Reidemeister torsion of Seifert fibered homology lens spaces and Dehn surgery. Algebraic Geom. Topol. 7, 1509–1529 (2007) zbMATHMathSciNetCrossRefGoogle Scholar
  82. [Ka77]
    Kawauchi, A.: On quadratic forms of 3-manifolds. Invent. Math. 43, 177–198 (1977) zbMATHMathSciNetCrossRefGoogle Scholar
  83. [Ka78]
    Kawauchi, A.: On the Alexander polynomials of cobordant links. Osaka J. Math. 15(1), 151–159 (1978) zbMATHMathSciNetGoogle Scholar
  84. [Ka96]
    Kawauchi, A.: Survey on Knot Theory. Birkhäuser, Basel (1996) Google Scholar
  85. [Ke75]
    Kearton, C.: Cobordism of knots and Blanchfield duality. J. Lond. Math. Soc. (2) 10(4), 406–408 (1975) zbMATHMathSciNetCrossRefGoogle Scholar
  86. [KL99a]
    Kirk, P., Livingston, C.: Twisted Alexander invariants, Reidemeister torsion and Casson–Gordon invariants. Topology 38(3), 635–661 (1999) zbMATHMathSciNetCrossRefGoogle Scholar
  87. [KL99b]
    Kirk, P., Livingston, C.: Twisted knot polynomials: inversion, mutation and concordan. Topology 38(3), 663–671 (1999) zbMATHMathSciNetCrossRefGoogle Scholar
  88. [Ki96]
    Kitano, T.: Twisted Alexander polynomials and Reidemeister torsion. Pac. J. Math. 174(2), 431–442 (1996) zbMATHMathSciNetGoogle Scholar
  89. [KM05]
    Kitano, T., Morifuji, T.: Divisibility of twisted Alexander polynomials and fibered knots. Ann. Sci. Norm. Super. Pisa, Cl. Sci. (5) 4(1), 179–186 (2005) zbMATHMathSciNetGoogle Scholar
  90. [KS05a]
    Kitano, T., Suzuki, M.: A partial order in the knot table. Exp. Math. 14, 385–390 (2005) zbMATHMathSciNetGoogle Scholar
  91. [KS05b]
    Kitano, T., Suzuki, M.: Twisted Alexander polynomials and a partial order on the set of prime knots. Geometry and Topology Monographs, vol. 13 (2008). In: Groups, Homotopy and Configuration Spaces (Tokyo 2005), pp. 307–322 Google Scholar
  92. [KS08]
    Kitano, T., Suzuki, M.: A partial order in the knot table II. Acta Math. Sin. 24, 1801–1816 (2008) zbMATHMathSciNetCrossRefGoogle Scholar
  93. [KSW05]
    Kitano, T., Suzuki, M., Wada, M.: Twisted Alexander polynomial and surjectivity of a group homomorphism. Algebraic Geom. Topol. 5, 1315–1324 (2005) zbMATHMathSciNetCrossRefGoogle Scholar
  94. [Kiy08a]
    Kitayama, T.: Normalization of twisted Alexander invariants. Preprint (2008) Google Scholar
  95. [Kiy08b]
    Kitayama, T.: Symmetry of Reidemeister torsion on SU 2-representation spaces of knots. Preprint (2008) Google Scholar
  96. [Kiy09]
    Kitayama, T.: Reidemeister torsion for linear representations and Seifert fibered surgery on knots. Topol. Appl. 156(15), 2496–2503 (2009) zbMATHMathSciNetCrossRefGoogle Scholar
  97. [Kr99]
    Kronheimer, P.: Minimal genus in S 1×M 3. Invent. Math. 135(1), 45–61 (1999) zbMATHMathSciNetCrossRefGoogle Scholar
  98. [KM08]
    Kronheimer, P., Mrowka, T.: Knots, sutures and excision. Preprint (2008) Google Scholar
  99. [KLM88]
    Kropholler, P.H., Linnell, P.A., Moody, J.A.: Applications of a new K-theoretic theorem to soluble group rings. Proc. Am. Math. Soc. 104(3), 675–684 (1988) zbMATHMathSciNetGoogle Scholar
  100. [KT09]
    Kutluhan, Ç., Taubes, C.: Seiberg-Witten Floer homology and symplectic forms on S 1×M 3. Geom. Topol. 13(1), 493–525 (2009) zbMATHMathSciNetCrossRefGoogle Scholar
  101. [Lei06]
    Leidy, C.: Higher-order linking forms for knots. Comment. Math. Helv. 81, 755–781 (2006) zbMATHMathSciNetCrossRefGoogle Scholar
  102. [LM06]
    Leidy, C., Maxim, L.: Higher-order Alexander invariants of plane algebraic curves. Int. Math. Res. Not. 2006, 12976 (2006) MathSciNetGoogle Scholar
  103. [LM08]
    Leidy, C., Maxim, L.: Obstructions on fundamental groups of plane curve complements. Real Complex Singul. Contemp. Math. 459, 117–130 (2008) MathSciNetGoogle Scholar
  104. [Let00]
    Letsche, C.: An obstruction to slicing knots using the eta invariant. Math. Proc. Camb. Philos. Soc. 128(2), 301–319 (2000) zbMATHMathSciNetCrossRefGoogle Scholar
  105. [LX03]
    Li, W., Xu, L.: Counting \(\mathit{SL}_{2}(\mathbb{F}_{2^{s}})\) representations of Torus Knot Groups. Acta Math. Sin. 19, 233–244 (2003) zbMATHCrossRefGoogle Scholar
  106. [LZ06a]
    Li, W., Zhang, W.: An L 2-Alexander-Conway invariant for knots and the volume conjecture. In: Differential Geometry and Physics. Nankai Tracts Math., vol. 10, pp. 303–312. World Scientific, Hackensack (2006) Google Scholar
  107. [LZ06b]
    Li, W., Zhang, W.: An L 2-Alexander invariant for knots. Commun. Contemp. Math. 8(2), 167–187 (2006) zbMATHMathSciNetCrossRefGoogle Scholar
  108. [Lib82]
    Libgober, A.: Alexander polynomial of plane algebraic curves and cyclic multiple planes. Duke Math. J. 49(4), 833–851 (1982) zbMATHMathSciNetCrossRefGoogle Scholar
  109. [Lin01]
    Lin, X.S.: Representations of knot groups and twisted Alexander polynomials. Acta Math. Sin. (Engl. Ser.) 17(3), 361–380 (2001) zbMATHMathSciNetCrossRefGoogle Scholar
  110. [Liv09]
    Livingston, C.: The concordance genus of a knot, II. Algebraic Geom. Topol. 9, 167–185 (2009) zbMATHMathSciNetCrossRefGoogle Scholar
  111. [Lü02]
    Lück, W.: L 2-invariants: Theory and Applications to Geometry and K-Theory. In: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 44. Springer, Berlin (2002) Google Scholar
  112. [McM02]
    McMullen, C.T.: The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology. Ann. Sci. Ec. Norm. Super. (4) 35(2), 153–171 (2002) zbMATHMathSciNetGoogle Scholar
  113. [MP09]
    Menal-Ferrer, P., Porti, J.: Twisted cohomology for hyperbolic three manifolds (2009, in preparation) Google Scholar
  114. [MT96]
    Meng, G., Taubes, C.H.: SW = Milnor torsion. Math. Res. Lett. 3, 661–674 (1996) zbMATHMathSciNetGoogle Scholar
  115. [Mi62]
    Milnor, J.: A duality theorem for Reidemeister torsion. Ann. Math. (2) 76, 137–147 (1962) MathSciNetCrossRefGoogle Scholar
  116. [Mi66]
    Milnor, J.: Whitehead torsion. Bull. Am. Math. Soc. 72, 358–426 (1966) zbMATHMathSciNetCrossRefGoogle Scholar
  117. [Mo01]
    Morifuji, T.: Twisted Alexander polynomial for the braid group. Bull. Aust. Math. Soc. 64(1), 1–13 (2001) zbMATHMathSciNetCrossRefGoogle Scholar
  118. [Mo07]
    Morifuji, T.: A Torres condition for twisted Alexander polynomials. Publ. Res. Inst. Math. Sci. 43(1), 143–153 (2007) zbMATHMathSciNetCrossRefGoogle Scholar
  119. [Mo08]
    Morifuji, T.: Twisted Alexander polynomials of twist knots for nonabelian representations. Bull. Sci. Math. 132, 439–453 (2008) zbMATHMathSciNetCrossRefGoogle Scholar
  120. [Mu67]
    Murasugi, K.: On a certain numerical invariant of link types. Trans. Am. Math. Soc. 117, 387–422 (1967) MathSciNetCrossRefGoogle Scholar
  121. [Mu71]
    Murasugi, K.: On periodic knots. Comment. Math. Helv. 46, 162–174 (1971) zbMATHMathSciNetCrossRefGoogle Scholar
  122. [Mu06]
    Murasugi, K.: Classical knot invariants and elementary number theory. Contemp. Math. 416, 167–197 (2006) MathSciNetGoogle Scholar
  123. [Mu03]
    Murasugi, K.: Lectures at the Workshop in Osaka City University, December 2003 Google Scholar
  124. [Na78]
    Nakagawa, Y.: On the Alexander polynomials of slice links. Osaka J. Math. 15(1), 161–182 (1978) zbMATHMathSciNetGoogle Scholar
  125. [Ni08]
    Ni, Y.: Addendum to: “Knots, sutures and excision”. Preprint (2008) Google Scholar
  126. [Nic03]
    Nicolaescu, L.: The Reidemeister torsion of 3-manifolds. de Gruyter Studies in Mathematics, vol. 30. de Gruyter, Berlin (2003) zbMATHGoogle Scholar
  127. [OS04]
    Ozsváth, P., Szabó, Z.: Holomorphic disks and 3-manifold invariants: properties and applications. Ann. Math. 159(3), 1159–1245 (2004) zbMATHCrossRefGoogle Scholar
  128. [Pa07]
    Pajitnov, A.: Novikov homology, twisted Alexander polynomials, and Thurston cones. St. Petersb. Math. J. 18(5), 809–835 (2007) zbMATHMathSciNetCrossRefGoogle Scholar
  129. [Pa08]
    Pajitnov, A.: On the tunnel number and the Morse-Novikov number of knots. Preprint (2008) Google Scholar
  130. [Po97]
    Porti, J.: Torsion de Reidemeister pour les Variétés Hyperboliques. Mem. Am. Math. Soc., vol. 612. AMS, Providence (1997) Google Scholar
  131. [Ri71]
    Riley, R.: Homomorphisms of knot groups on finite groups. Math. Comput. 25, 603–619 (1971) zbMATHMathSciNetCrossRefGoogle Scholar
  132. [Ri72]
    Riley, R.: Parabolic representations of knot groups, I. Proc. Lond. Math. Soc. (3) 24, 217–242 (1972) zbMATHMathSciNetCrossRefGoogle Scholar
  133. [Ri84]
    Riley, R.: Nonabelian representations of 2-bridge knots groups. Q. J. Math. Oxford Ser. (2) 35, 191–208 (1984) zbMATHMathSciNetCrossRefGoogle Scholar
  134. [Ri90]
    Riley, R.: Growth of order of homology of cyclic branched covers of knots. Bull. Lond. Math. Soc. 22, 287–297 (1990) zbMATHMathSciNetCrossRefGoogle Scholar
  135. [Sa08]
    Sakasai, T.: The Magnus representation and higher-order Alexander invariants for homology cobordisms of surfaces. Algebraic Geom. Topol. 8, 803–848 (2008) zbMATHMathSciNetCrossRefGoogle Scholar
  136. [Sa06]
    Sakasai, T.: Higher-order Alexander invariants for homology cobordisms of a surface. In: Intelligence of Low Dimensional Topology 2006. Series on Knots and Everything, vol. 40, pp. 271–278 Google Scholar
  137. [Sa07]
    Sakasai, T.: Computations of noncommutative Alexander invariants for string links, slides of talk. Available at
  138. [Se35]
    Seifert, H.: Über das Geschlecht von Knoten. Math. Ann. 110(1), 571–592 (1935) zbMATHMathSciNetCrossRefGoogle Scholar
  139. [SW02]
    Silver, D., Williams, S.: Mahler measure, links and homology growth. Topology 41, 979–991 (2002) zbMATHMathSciNetCrossRefGoogle Scholar
  140. [SW06]
    Silver, D., Williams, S.: Twisted Alexander polynomials detect the unknot. Algebraic Geom. Topol. 6, 1893–1907 (2006) zbMATHMathSciNetCrossRefGoogle Scholar
  141. [SW09a]
    Silver, D., Williams, S.: Nonfibered knots and representation shifts. Banach Cent. Publ. 85, 101–107 (2009). Proceedings of Postnikov Memorial Conference MathSciNetCrossRefGoogle Scholar
  142. [SW09b]
    Silver, D., Williams, S.: Twisted Alexander polynomials and representation shifts. Bull. Lond. Math. Soc. 41, 535–540 (2009) zbMATHMathSciNetCrossRefGoogle Scholar
  143. [SW09c]
    Silver, D., Williams, S.: Dynamics of twisted Alexander invariants. Topol. Appl. 156, 2795–2811 (2009) zbMATHMathSciNetCrossRefGoogle Scholar
  144. [SW09d]
    Silver, D., Williams, S.: Alexander-Lin twisted polynomials. Preprint (2009) Google Scholar
  145. [SW09e]
    Silver, D., Williams, S.: On a Theorem of Burde and de Rham. Preprint (2009) Google Scholar
  146. [St74]
    Strebel, R.: Homological methods applied to the derived series of groups. Comment. Math. Helv. 49, 302–332 (1974) zbMATHMathSciNetGoogle Scholar
  147. [Sug07]
    Sugiyama, K.: An analog of the Iwasawa conjecture for a complete hyperbolic threefold of finite volume. J. Reine Angew. Math. 613, 35–50 (2007) zbMATHMathSciNetGoogle Scholar
  148. [Sum71]
    Sumners, D.W.: Invertible knot cobordisms. Comment. Math. Helv. 46, 240–256 (1971) zbMATHMathSciNetCrossRefGoogle Scholar
  149. [Suz04]
    Suzuki, M.: Twisted Alexander polynomial for the Lawrence-Krammer representation. Bull. Aust. Math. Soc. 70(1), 67–71 (2004) zbMATHCrossRefGoogle Scholar
  150. [Tam02]
    Tamulis, A.: Knots of ten or fewer crossings of algebraic order two. J. Knot Theory Ramif. 11(2), 211–222 (2002) zbMATHMathSciNetCrossRefGoogle Scholar
  151. [Ta94]
    Taubes, C.H.: The Seiberg-Witten invariants and symplectic forms. Math. Res. Lett. 1, 809–822 (1994) zbMATHMathSciNetGoogle Scholar
  152. [Ta95]
    Taubes, C.H.: More constraints on symplectic forms from Seiberg-Witten invariants. Math. Res. Lett. 2, 9–13 (1995) zbMATHMathSciNetGoogle Scholar
  153. [Th76]
    Thurston, W.P.: Some simple examples of symplectic manifolds. Proc. Am. Math. Soc. 55(2), 467–468 (1976) zbMATHMathSciNetGoogle Scholar
  154. [Th82]
    Thurston, W.P.: Three dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Am. Math. Soc. 6 (1982) Google Scholar
  155. [Th86]
    Thurston, W.P.: A norm for the homology of 3-manifolds. Mem. Am. Math. Soc. 339, 99–130 (1986) zbMATHMathSciNetGoogle Scholar
  156. [Th87]
    Thurston, W.P.: Geometry and Topology of 3-Manifolds. Princeton University Lecture Notes. Princeton University Press, Princeton (1987) Google Scholar
  157. [To53]
    Torres, G.: On the Alexander polynomial. Ann. Math. 57, 57–89 (1953) MathSciNetCrossRefGoogle Scholar
  158. [Tr61]
    Trotter, H.F.: Periodic automorphisms of groups and knots. Duke Math. J. 28, 553–557 (1961) zbMATHMathSciNetCrossRefGoogle Scholar
  159. [Tu75]
    Turaev, V.: The Alexander polynomial of a three-dimensional manifold. Mat. Sb. (N.S.) 97(139) (1975), no. 3(7), 341–359. (In Russian) Google Scholar
  160. [Tu86]
    Turaev, V.: Reidemeister torsion in knot theory. Russ. Math. Surv. 41(1), 119–182 (1986) zbMATHMathSciNetCrossRefGoogle Scholar
  161. [Tu97]
    Turaev, V.: Torsion invariants of Spinc-structures on 3-manifolds. Math. Res. Lett. 4(5), 679–695 (1997) zbMATHMathSciNetGoogle Scholar
  162. [Tu98]
    Turaev, V.: A combinatorial formulation for the Seiberg-Witten invariants of 3-manifolds. Math. Res. Lett. 5(5), 583–598 (1998) zbMATHMathSciNetGoogle Scholar
  163. [Tu01]
    Turaev, V.: Introduction to Combinatorial Torsions. Birkhäuser, Basel (2001) zbMATHGoogle Scholar
  164. [Tu02a]
    Turaev, V.: Torsions of 3-Manifolds. Progress in Mathematics, vol. 208. Birkhauser, Basel (2002) Google Scholar
  165. [Tu02b]
    Turaev, V.: A homological estimate for the Thurston norm. Unpublished note (2002). arXiv:math.GT/0207267
  166. [Tu02c]
    Turaev, V.: A norm for the cohomology of 2-complexes. Algebraic Geom. Topol. 2, 137–155 (2002) zbMATHMathSciNetCrossRefGoogle Scholar
  167. [Vi99]
    Vidussi, S.: The Alexander norm is smaller than the Thurston norm; a Seiberg–Witten proof. Prepublication Ecole Polytechnique 6 (1999) Google Scholar
  168. [Vi03]
    Vidussi, S.: Norms on the cohomology of a 3-manifold and SW theory. Pac. J. Math. 208(1), 169–186 (2003) zbMATHMathSciNetCrossRefGoogle Scholar
  169. [Wa94]
    Wada, M.: Twisted Alexander polynomial for finitely presentable groups. Topology 33(2), 241–256 (1994) zbMATHMathSciNetCrossRefGoogle Scholar
  170. [Wh87]
    Whitten, W.: Knot complements and groups. Topology 26, 41–44 (1987) zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.University of WarwickCoventryUK
  2. 2.Department of MathematicsUniversity of CaliforniaRiversideUSA

Personalised recommendations