Advertisement

DNA, Knots and Tangles

  • De Witt SumnersEmail author
Chapter
Part of the Contributions in Mathematical and Computational Sciences book series (CMCS, volume 1)

Abstract

The DNA of all organisms has a complex and essential topology. Each cell has a family of naturally occurring enzymes that manipulate cellular DNA in topologically interesting and non-trivial ways in order to mediate the vital cellular life processes of replication, transcription and recombination. In order to assay enzyme binding and mechanism, molecular biologists developed the topological approach to enzymology, an experimental protocol in which one reacts small artificial circular DNA substrate molecules with purified enzyme in vitro (in the test tube). The enzyme acts on the DNA substrate, causing changes in the geometry (supercoiling) and/or topology (knotting and linking) of the DNA molecules. Once change in topology of the DNA is known, mathematical analysis can be employed to tease out the structure of the active DNA-protein complex and the changes in that structure due to enzyme mechanism. This paper will describe the tangle model and apply it to the case of site-specific DNA recombination.

Keywords

Lens Space Cyclic Cover Synaptic Complex Dehn Surgery Ambient Isotopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ATV+02]
    Arsuaga, J., Tan, R.K.-Z., Vazquez, M., Sumners, D.W., Harvey, S.C.: Investigation of viral DNA packing using molecular mechanics models. Biophys. Chem. 101–102, 475–484 (2002) CrossRefGoogle Scholar
  2. [AVT+02]
    Arsuaga, J., Vazquez, M., Trigueros, S., Sumners, D.W., Roca, J.: Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids. Proc. Natl. Acad. Sci. USA 99, 5373–5377 (2002) CrossRefGoogle Scholar
  3. [AVM+05]
    Arsuaga, J., Vazquez, M., McGuirk, P., Sumners, D.W., Roca, J.: DNA knots reveal chiral organization of DNA in phage capsids. Proc. Natl. Acad. Sci. USA 102, 9165–9169 (2005) CrossRefGoogle Scholar
  4. [BCW80]
    Bauer, W.R., Crick, F.H.C., White, J.H.: Supercoiled DNA. Sci. Am. 243, 100–113 (1980) Google Scholar
  5. [BZ04]
    Buck, G., Zechiedrich, E.L.: DNA disentangling by type-2 topoisomerases. J. Mol. Biol. 340, 933–939 (2004) CrossRefGoogle Scholar
  6. [BZ85]
    Burde, G., Zieschang, H.: Knots. de Gruyter, Berlin (1985) zbMATHGoogle Scholar
  7. [Căl61]
    Călugareănu, G.: Sur les classes d’isotope des noeuds tridimensionnels et leurs invariants. Czechoslov. Math. J. 11, 588–625 (1961) Google Scholar
  8. [Con70]
    Conway, J.H.: On enumeration of knots and links, and some of their algebraic properties. In: Computational Problems in Abstract Algebra. Proc. Conf., Oxford 1967, pp. 329–358. Pergamon, Elmsford (1970) Google Scholar
  9. [CCM+06]
    Cozzarelli, N.R., Cost, G.J., Mollman, M., Viard, T., Stray, J.E.: Giant proteins that move DNA: bullies of the genomic playground. Nat. Rev. Mol. Cell Biol. 7, 580–588 (2006) CrossRefGoogle Scholar
  10. [CWP+99]
    Crisona, N.J., Weinberg, R.L., Peter, B.J., Sumners, D.W., Cozzarelli, N.R.: The topological mechanism of phage lambda integrase. J. Mol. Biol. 289, 747–775 (1999) CrossRefGoogle Scholar
  11. [CGLS87]
    Culler, M.C., Gordon, C.M., Luecke, J., Shalen, P.B.: Dehn surgery on knots. Ann. Math. 125, 237–300 (1987) CrossRefMathSciNetGoogle Scholar
  12. [DS97]
    Darcy, I.K., Sumners, D.W.: A strand passage metric for topoisomerase action. In: Suzuki, S. (ed.) Knots ’96. Proceedings of the Fifth International Research Institute of the Mathematical Society of Japan, pp. 267–278. World Scientific, Singapore (1997) Google Scholar
  13. [DS98]
    Darcy, I.K., Sumners, D.W.: Applications of topology to DNA. Banach Cent. Publ. 42, 65–75 (1998) MathSciNetGoogle Scholar
  14. [DS00]
    Darcy, I.K., Sumners, D.W.: Rational tangle distances on knots and links. Math. Proc. Camb. Philos. Soc. 128, 497–510 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  15. [DMSZ07]
    Deibler, R.W., Mann, J.K., Sumners, D.W., Zechiedrich, L.: Hin-mediated DNA knotting and recombining promote replicon dysfunction and mutation. BMC Mol. Biol. 8, 44 (2007) CrossRefGoogle Scholar
  16. [ES90]
    Ernst, C., Sumners, D.W.: A calculus for rational tangles: applications to DNA recombination. Math. Proc. Camb. Philos. Soc. 108, 489–515 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  17. [ES99]
    Ernst, C., Sumners, D.W.: Solving tangle equations arising in a recombination model. Math. Proc. Camb. Philos. Soc. 126, 23–36 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  18. [Ful71]
    Fuller, B.: The writhing number of a space curve. Proc. Natl. Acad. Sci. USA 68, 815–819 (1971) zbMATHCrossRefMathSciNetGoogle Scholar
  19. [GWR06]
    Grindley, N.D.F., Whiteson, K.L., Rice, P.A.: Mechanisms of site-specific recombination. Ann. Rev. Biochem. 75, 567–605 (2006) CrossRefGoogle Scholar
  20. [Jon85]
    Jones, V.F.R.: A polynomial invariant for knots an links via Von Neumann algebras. Bull. Am. Math. Soc. 12, 103–111 (1985) zbMATHCrossRefGoogle Scholar
  21. [Kau87]
    Kauffman, L.H.: On Knots. Ann. of Math. Studies, vol. 115. Princeton University Press, Princeton (1987) zbMATHGoogle Scholar
  22. [KSS+83]
    Krasnow, M.A., Stasiak, A., Spengler, S.J., Dean, F., Koller, T., Cozzarelli, N.R.: Determination of the absolute handedness of knots and catenanes of DNA. Nature 304, 559–560 (1983) CrossRefGoogle Scholar
  23. [LBHS86]
    Lacher, R.C., Bryant, J.L., Howard, L., Sumners, D.W.: Linking phenomena in the amorphous phase of semicrystalline polymers. Macromolecules 19, 2639–2643 (1986) CrossRefGoogle Scholar
  24. [Lic81]
    Lickorish, W.B.R.: Prime knots and tangles. Trans. Am. Math. Soc. 267, 321–332 (1981) zbMATHCrossRefMathSciNetGoogle Scholar
  25. [LMZC06]
    Liu, Z., Mann, J.K., Zechiedrich, E.L., Chan, H.S.: Topological information embodied in local juxtaposition geometry provides a statistical mechanical basis for unknotting by type-2 DNA topoisomerases. J. Mol. Biol. 361, 268–285 (2006) CrossRefGoogle Scholar
  26. [LZC06]
    Liu, Z., Zechiedrich, E.L., Chan, H.S.: Inferring global topology from local juxtaposition geometry: interlinking polymer rings and ramifications for topoisomerase action. Biophys. J. 90, 2344–2355 (2006) CrossRefGoogle Scholar
  27. [MOS+09]
    Marenduzzo, D., Orlandini, E., Stasiak, A., Sumners, D.W., Tubiana, L., Micheletti, C.: DNA-DNA interactions in bacteriophage capsids are responsible for the observed DNA knotting. Proc. Natl. Acad. Sci. USA 106, 22269–22274 (2009) CrossRefGoogle Scholar
  28. [MMOS06]
    Micheletti, C., Marenduzzo, D., Orlandini, E., Sumners, D.W.: Knotting of random ring polymers in confined spaces. J. Chem. Phys. 124(1–10), 064903 (2006) CrossRefGoogle Scholar
  29. [MMOS08]
    Micheletti, C., Marenduzzo, D., Orlandini, E., Sumners, D.W.: Simulations of knotting in confined circular DNA. Biophys. J. 95, 3591–3599 (2008) CrossRefGoogle Scholar
  30. [Mof99]
    Moffatt, H.K.: Knots and Fluid Dynamics. In: Stasiak, A., Katritch, V., Kauffman, L.H. (eds.) Ideal Knots. Series on Knots and Everything, vol. 19, pp. 223–233. World Scientific, Singapore (1999) CrossRefGoogle Scholar
  31. [Mos71]
    Moser, L.: Elementary surgery along a torus knot. Pac. J. Math. 38, 737–745 (1971) zbMATHGoogle Scholar
  32. [Ric99]
    Ricca, R.L.: New developments in topological fluid mechanics: from Kelvin’s vortex knots to magnetic knots. In: Stasiak, A., Katritch, V., Kauffman, L.H. (eds.) Ideal Knots. Series on Knots and Everything, vol. 19, pp. 255–273. World Scientific, Singapore (1999) CrossRefGoogle Scholar
  33. [Ric01]
    Ricca, R.L.: Tropicity and Complexity Measures for Vortex Tangles. Lecture Notes in Physics, vol. 571, pp. 366–372. Springer, Berlin (2001) Google Scholar
  34. [Rol76]
    Rolfsen, D.: Knots and Links. Publish or Perish, Berkeley (1976) zbMATHGoogle Scholar
  35. [SV02]
    Saka, Y., Vazquez, M.: TangleSolve: topological analysis of site-specific recombination. Bioinformatics 18, 1011–1012 (2002) CrossRefGoogle Scholar
  36. [Sch56]
    Schubert, H.: Knoten mit zwei Brücken. Math. Z. 65, 133–170 (1956) zbMATHCrossRefMathSciNetGoogle Scholar
  37. [SKB+96]
    Stasiak, A., Katritch, V., Bednar, J., Michoud, D., Dubochet, J.: Electrophoretic mobility of DNA knots. Nature 384(6605), 122 (1996). doi: 10.1038/384122a0 CrossRefMathSciNetGoogle Scholar
  38. [Ste88]
    Steen, L.A.: The science of patterns. Science 240, 611–616 (1988) CrossRefMathSciNetGoogle Scholar
  39. [Sum87]
    Sumners, D.W.: The role of knot theory in DNA research. In: McCrory, C., Schifrin, T. (eds.) Geometry and Topology, pp. 297–318. Dekker, New York (1987). Chap. 24 Google Scholar
  40. [Sum90]
    Sumners, D.W.: Untangling DNA. Math. Intell. 12, 71–80 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  41. [Sum92]
    Sumners, D.W.: Knot theory and DNA. In: Sumners, D.W. (ed.) New Scientific Applications of Geometry and Topology. Proceedings of Symposia in Applied Mathematics, vol. 45, pp. 39–72. Am. Math. Soc., Providence (1992) Google Scholar
  42. [Sum95]
    Sumners, D.W.: Lifting the curtain: Using topology to probe the hidden action of enzymes. Not. Am. Math. Soc. 42, 528–537 (1995) zbMATHMathSciNetGoogle Scholar
  43. [Sum09]
    Sumners, D.W.: Random knotting: theorems, simulations and applications. In: Ricca, R. (ed.) Lectures on Topological Fluid Mechanics. CIME Lecture Notes in Mathematics, vol. 1973, pp. 187–217. Springer, Berlin (2009) CrossRefGoogle Scholar
  44. [Sum07]
    Sumners, D.W.: DNA topology: experiments and analysis. In: Kawauchi, A. (ed.) Knot Theory for Scientific Objects. Proceedings of the International Workshop on Knot Theory for Scientific Objects. OCAMI Studies, vol. 1(2), pp. 213–237 (2007) Google Scholar
  45. [SESC95]
    Sumners, D.W., Ernst, C., Spengler, S.J., Cozzarelli, N.R.: Analysis of the mechanism of DNA recombination using tangles. Q. Rev. Biophys. 28, 253–313 (1995) CrossRefGoogle Scholar
  46. [TAV+01]
    Trigueros, S., Arsuaga, J., Vazquez, M., Sumners, D.W., Roca, J.: Novel display of knotted DNA molecules by two-dimensional gel electrophoresis. Nucleic Acids Res. 29, 67–71 (2001) CrossRefGoogle Scholar
  47. [Vaz00]
    Vazquez, M.: Tangle analysis of site-specific recombination: Gin and Xer systems. PhD thesis, Florida State University, Tallahassee, FL (2000) Google Scholar
  48. [VS04]
    Vazquez, M., Sumners, D.W.: Tangle analysis of Gin site-specific recombination. Math. Proc. Camb. Philos. Soc. 136, 565–582 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  49. [VCS05]
    Vazquez, M., Colloms, S.D., Sumners, D.W.: Tangle analysis of Xer recombination reveals only three solutions, all consistent with a single three-dimensional topological pathway. J. Mol. Biol. 346, 493–504 (2005) CrossRefGoogle Scholar
  50. [VMK06]
    Virnau, P., Mirny, L.A., Kardar, M.: Intricate knots in proteins: function and evolution. PLoS Comput. Biol. 2, e122 (2006) CrossRefGoogle Scholar
  51. [Wan02]
    Wang, J.C.: Cellular roles of DNA topoisomerases, a molecular perspective. Nat. Rev. Molecular Cell Biol. 3, 430–440 (2002) CrossRefGoogle Scholar
  52. [Wan09]
    Wang, J.C.: Untangling the Double Helix, DNA Entanglement and the Action of DNA Topoiosmerases. Cold Spring Harbor Laboratory Press, Cold Spring (2009) Google Scholar
  53. [WC85]
    Wasserman, S.A., Cozzarelli, N.R.: Determination of the stereostructure of the product of Tn3 resolvase by a general method. Proc. Natl. Acad. Sci. USA 82, 1079–1083 (1985) CrossRefGoogle Scholar
  54. [WC86]
    Wasserman, S.A., Cozzarelli, N.R.: Biochemical topology: applications to DNA recombination and replication. Science 232, 951–960 (1986) CrossRefGoogle Scholar
  55. [WDC85]
    Wasserman, S.A., Dungan, J.M., Cozzarelli, N.R.: Discovery of a predicted DNA knot substantiates a model for site-specific recombination. Science 229, 171–174 (1985) CrossRefGoogle Scholar
  56. [Whi69]
    White, J.H.: Self-linking and the Gauss integral in higher dimensions. Am. J. Math. 91, 693–728 (1969) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of MathematicsFlorida State UniversityTallahasseeUSA

Personalised recommendations