Skip to main content

Future Trends in Sports Traumatology: The Puzzling Human Joint

  • Chapter
  • First Online:
Sports Injuries

Abstract

Epidemiologic data demonstrate increase in awareness of the benefits of physical activity crossing age and gender, thus increasing the number musculoskeletal injuries.

Joint injuries pose a remarkable challenge due to the highly specialized hyalin cartilage that in the face of injury has no regenerative capability.

Chondrocytes extracted from their natural environment, invariably lose their genetic phenotype by way of dedifferentiation. Various technologies combining adult stem cells enhanced by biomaterials, in-vitro autologous chondrocytes culture on bioabsorbable scaffolds, and the use of growth factors and genetic selection have all resulted in hyaline-like tissue.

Limited clinical trials are conducted with fresh allogeneic cartilage cells. Preclinical studies are available where xenogeneic neonatal porcine cells are used for regenerative purposes. It is difficult to predict the technology and the timing of the next breakthrough; it is encouraging to observe the scientific broadmindedness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almqvist, K.F., Dhollander, A., Verdonk, P., et al.: The treatment of cartilage defects in the knee using alginate beads containing human allogenic chondrocytes: preliminary results. Knee Surg. Sports Traumatol. Arthrosc. 16(Suppl 1), S33–S66 (2008)

    Google Scholar 

  2. Aviezer, D., Seddon, A.P., Wildey, M.J., et al.: Development of a high throughput screening assay for inhibitors of fibroblast growth factor-receptor-heparin interaction. J. Biomol. Screen 6(3), 171–177 (2001)

    Article  PubMed  CAS  Google Scholar 

  3. Ball, S.T., Goomer, R.S., Ostrander, R.V., et al.: Preincubation of tissue engineered constructs enhances donor cell retention. Clin. Orthop. Relat. Res. 420, 276–285 (2004)

    Article  PubMed  Google Scholar 

  4. Bentley, G., Biant, L.C., Carrington, R.W., et al.: A prospective, randomized comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J. Bone Joint Surg. Br. 85(2), 223–230 (2003)

    Article  PubMed  CAS  Google Scholar 

  5. Biant, L.C., Bentley, G.: Stem cells and debrided waste: two alternative sources of cells for transplantation of cartilage. J. Bone Joint Surg. Br. 89(8), 1110–1114 (2007)

    Article  PubMed  CAS  Google Scholar 

  6. Bigdeli, N., Karlsson, C., Strehl, R., et al.: Co-culture of human embryonic stem cells and human articular chondrocytes results in significantly altered phenotype and improved chondrogenic differentiation. Stem Cells 27(8), 1812–1821 (2009)

    Article  PubMed  Google Scholar 

  7. Brittberg, M., Lindahl, A., Nilsson, A., et al.: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331(14), 889–895 (1994)

    Article  PubMed  CAS  Google Scholar 

  8. Chaipinyo, K., Oakes, B.W., Van Damme, M.P.: The use of debrided human articular cartilage for autologous chondrocyte implantation: maintenance of chondrocyte differentiation and proliferation in type I collagen gels. J. Orthop. Res. 22(2), 446–455 (2004)

    Article  PubMed  CAS  Google Scholar 

  9. Curl, W.W., Krome, J., Gordon, E.S., et al.: Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 13(4), 456–460 (1997)

    Article  PubMed  CAS  Google Scholar 

  10. Galili, U., LaTemple, D.C., Walgenbach, A.W., et al.: Porcine and bovine cartilage transplants in cynomolgus monkey: II. Changes in anti-gal response during chronic rejection. Transplantation 63(5), 646–651 (1997)

    Article  PubMed  CAS  Google Scholar 

  11. Gobbi, A., Bathan, L.: Biological approaches for cartilage repair. J. Knee Surg. 22(1), 36–44 (2009)

    Article  PubMed  Google Scholar 

  12. Hetherington, V.J., Kawalec, J.S., Dockery, D.S., et al.: Immunologic testing of xeno-derived osteochondral grafts using peripheral blood mononuclear cells from health human donors. BMC Musculoskelet. Disord. 6, 36 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kang, S.W., Yoo, S.P., Kim, B.S.: Effects of chondrocyte passage number on histological aspects of tissue-engineered cartilage. Biomed. Mater. Eng. 17(5), 269–276 (2007)

    PubMed  CAS  Google Scholar 

  14. Knusten, G., Engebresten, L., Lunvigsten, T.C., et al.: Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J. Bone Joint Surg. Am. 86(3), 455–464 (2004)

    Google Scholar 

  15. Krishnan, S.P., Skinner, J.A., Bartlett, W., et al.: Who is the ideal candidate for autologous chondrocyte implantation? J. Bone Joint Surg. Br. 88(1), 61–64 (2006)

    Article  PubMed  CAS  Google Scholar 

  16. Krishnan, S.P., Skinner, J.A., Carrington, R.W., et al.: Collagen-covered autologous chondrocyte implantation for osteochondritis dissecans of the knee: two- to seven-year results. J. Bone Joint Surg. Br. 88(2), 203–205 (2006)

    Article  PubMed  CAS  Google Scholar 

  17. Maor, G., Goldberg, G., Nierenberg, G.: Xenotransplantation in cartilage repair – a new practical outlook. 8th World Congress of the ICRS, Miami, 23–26 May 2009

    Google Scholar 

  18. Marcacci, M., Berruto, M., Brocchetta, D., et al.: Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin. Orthop. Relat. Res. 435, 96–105 (2005)

    Article  PubMed  Google Scholar 

  19. Martin, J.A., Brown, T., Heiner, A., et al.: Post-traumatic osteoarthritis: the role of accelerated chondrocyte senescence. Biorheology 41(3–4), 479–491 (2004)

    PubMed  CAS  Google Scholar 

  20. Miller, B.S., Steadman, J.R., Briggs, K.K., et al.: Patient satisfaction and outcome after microfracture of the degenerative knee. J. Knee Surg. 17(1), 13–17 (2004)

    PubMed  Google Scholar 

  21. Moriya, T., Wada, Y., Watanabe, A., et al.: Evaluation of reparative cartilage after autologous chondrocyte implantation for osteochondritis dissecans: histology, biochemistry, and MR imaging. J. Orthop. Sci. 12(3), 265–273 (2007)

    Article  PubMed  Google Scholar 

  22. Nakayama, N., Duryea, D., Manoukian, R., et al.: Macroscopic cartilage formation with embryonic stem-cell derived mesodermal progenitor cells. J. Cell Sci. 116(Pt 10), 2015–2028 (2003)

    Article  PubMed  CAS  Google Scholar 

  23. Nehrer, S., Chiari, C., Domayer, S., et al.: Results of chondrocyte implantation with a fibrin-hyaluronan matrix: a preliminary study. Clin. Orthop. Relat. Res. 466(8), 1849–1855 (2008)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Nevo, Z., Robinson, D., Halperin, N., et al.: Culturing chondrocytes for implantation. In: Maroudas, A., Kuettner, K. (eds.) Methods in Cartilage Research, 1st edn, pp. 98–100. Academic, London (1990)

    Google Scholar 

  25. O’Driscoll, S.W., Marx, R.G., Beaton, D.E., et al.: Validation of a simple histological–histochemical cartilage scoring system. Tissue Eng. 7(3), 303–320 (2001)

    Article  Google Scholar 

  26. Oh, C.D., Chun, J.S.: Signaling mechanisms leading to the regulation of differentiation and apoptosis of articular chondrocyte by insulin-like growth factor-1. J. Biol. Chem. 278(38), 36563–36571 (2003)

    Article  PubMed  CAS  Google Scholar 

  27. Pridie, K.H.: A method of resurfacing osteoarthritic knee joints. J. Bone Joint Surg. Br. 41, 618–619 (1959)

    Google Scholar 

  28. Ruano-Ravina, A., Jato Diaz, M.: Autologous chondrocyte implantation: a systematic review. Osteoarthritis Cartilage 14(1), 47–51 (2006)

    Article  PubMed  CAS  Google Scholar 

  29. Safran, M.R., Kim, H., Zaffagnini, S.: The use of scaffolds in the management of articular cartilage injury. J. Am. Acad. Orthop. Surg. 16(6), 306–311 (2008)

    PubMed  Google Scholar 

  30. Saris, D.B.F., Vanlauwe, J., Victor, J., et al.: Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am. J. Sports Med. 36(2), 235–246 (2008)

    Article  PubMed  Google Scholar 

  31. Smith, G.D., Knusten, G., Richardson, J.B.: A clinical review of cartilage repair techniques. J. Bone Joint Surg. Br. 87(4), 445–449 (2005)

    Article  PubMed  CAS  Google Scholar 

  32. Solomon, D.J., Williams III, R.J., Warren, R.F.: Marrow stimulation and microfracture for the repair of articular cartilage lesion. In: Williams, R.J. (ed.) Cartilage Repair Strategies, 1st edn. Humana Press, Totowa (2007)

    Google Scholar 

  33. Spindler, K.P., Wright, R.W.: Anterior cruciate ligament tear. N. Engl. J. Med. 359(20), 2135–2142 (2008)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Sreadman, J.R., Rodkey, W.G., Rodrigo, J.J.: Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin. Orthop. Relat. Res. 391(Suppl), S362–S369 (2001)

    Article  Google Scholar 

  35. Srouji, S., Kizhner, T., Suss-Tobi, E., et al.: 3-D Nanofibrous electrospun multilayered construct is an alternative ECM mimicking scaffold. J. Mater. Sci. Mater. Med. 19(3), 1249–1255 (2008)

    Article  PubMed  CAS  Google Scholar 

  36. Steinert, A.F., Ghivizzani, S.C., Rethwilm, A., et al.: Major biological obstacles for persistent cell-based regeneration of articular cartilage. Arthritis Res. Ther. 9(3), 213–227 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  37. Steinwachs, M.R., Guggi, T., Kreuz, P.C.: Marrow stimulation techniques. Injury 39(Suppl 1), S26–S31 (2008)

    Article  PubMed  Google Scholar 

  38. Stone, K.R., Abdel-Motal, U.M., Walgenbach, A.W., et al.: Replacement of human anterior cruciate ligaments with pig ligaments: a model for anti-non-gal antibody response in long-term xenotransplantation. Transplantation 83(2), 211–219 (2007)

    Article  PubMed  CAS  Google Scholar 

  39. Takahashi, T., Ogasawara, T., Asawa, Y., et al.: Three-dimensional microenvironments retain chondrocyte phenotypes during proliferation culture. Tissue Eng. 13(7), 1583–1592 (2007)

    Article  PubMed  CAS  Google Scholar 

  40. Williams III, R.J., Harnly, H.W.: Microfracture: indications, technique, and results. Instr. Course Lect. 56, 419–428 (2007)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Nierenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nierenberg, G., Soudry, M., Maor, G. (2012). Future Trends in Sports Traumatology: The Puzzling Human Joint. In: Doral, M. (eds) Sports Injuries. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15630-4_156

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15630-4_156

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15629-8

  • Online ISBN: 978-3-642-15630-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics