Skip to main content

Constraint Multi-objective Automated Synthesis for CMOS Operational Amplifier

  • Conference paper
Life System Modeling and Intelligent Computing (ICSEE 2010, LSMS 2010)

Abstract

The synthesis of CMOS operational amplifier (Op-Amp) can be translated into a constrained multi-objective optimization problem, in which a large number of specifications have to be taken into account, i.e., gain, unity gain-bandwidth (GBW), slew-rate (SR), common-mode rejection ratio (CMRR) and bias conditions. A constraint handling strategy without penalty parameters for multi-objective optimization algorithm is proposed. A standard operational amplifier is then designed, the results show the proposed methodology is very effective and can obtain better specifications than other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Razavi, B.: Design of Analog CMOS Integrated Circuits. McGraw-Hill, Inc., New York (2000)

    Google Scholar 

  2. Mandal, P., Visvanathan, V.A.: Self-Biased High Performance Folded Cascade CMOS Op-Amp. In: Tenth International Conference on VLSI Design, Hyderabad, India, pp. 4–7, 429 -434 (January 1997)

    Google Scholar 

  3. Wang, S., Gao, H., Wang, Z.: The research of parameter optimization design method for analog circuit. In: Proceedings of the Instrumentation and Management Technology Conference, pp. 1515–1518 (2004)

    Google Scholar 

  4. Koza, J., Bennett, F., Andre, D., Keane, M., Dunlap, F.: Automated synthesis of analog electrical circuits by means of genetic programming. IEEE Trans. Evol. Comput. 1(2), 109–128 (1997)

    Article  Google Scholar 

  5. Phelps, R., Krasnicki, M.J., Rutenbar, R.A., Carley, L.R., Hellums, J.R.: Anaconda: simulation-based synthesis of analog circuits via stochastic pattern search. IEEE Trans. Comput. Aid. Design. 19(6), 703–717 (2000)

    Article  Google Scholar 

  6. Goh, C., Li, Y.: GA automated design and synthesis of analog circuits with practical constraints. IEEE Cong. Evol. Comput. 1, 17–177 (2001)

    Google Scholar 

  7. Barros, M., Neves, G., Guilherme, J., Horta, N.: An evolutionary optimization kernel with adaptive parameters applied to analog circuit design. In: Proceedings of the International Symposium on Signals, Circuits and Systems, pp. 545–548 (2005)

    Google Scholar 

  8. Liu, B., et al.: Analog circuit optimization system based on hybrid evolutionary algorithms. Integration, The VLSI Journal 42(2), 137–148 (2009)

    Article  Google Scholar 

  9. Joines, J., Houck, C.: On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GAs. In: Proc. IEEE Int. Conf. Evol. Comput., pp. 579–584 (1994)

    Google Scholar 

  10. Deb, K.: An efficient constraint handling method for genetic algorithm. Comput. Methods Appl. Mech. Eng. 186, 311–338 (2000)

    Article  MATH  Google Scholar 

  11. Deb, K., Kalyanmoy, D.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons Ltd, London (2001)

    MATH  Google Scholar 

  12. Deb, K., et al.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  13. Favuzza, S., Ippolito, M.G., Sanseverino, E.R.: Crowded comparison operators for constraints handling in NSGA-II for optimal design of the compensation system in electrical distribution networks. Advanced Engineering Informatics 20(2), 201–211 (2006)

    Article  Google Scholar 

  14. Majumdar, S., Mitra, K., Raha, S.: Optimized species growth in epoxy polymerization with real-coded NSGA-II. Polymer 46(25), 11858–11869 (2005)

    Article  Google Scholar 

  15. Jili, T., Ning, W., Chen, X.M.: Multi-objective optimization of PID controller parameters for unstable FOPDT plants. Journal of Chemical Industry and Engineering 59(11), 59–66 (2008) (In Chinese)

    Google Scholar 

  16. Allen, P.E., Holberg, D.R.: CMOS analog circuit design. Oxford University Press, USA (2002)

    Google Scholar 

  17. Michalewicz, Z., Schoenauer, M.: Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation 4(1), 1–32 (1996)

    Article  Google Scholar 

  18. Michalewicz, G.Z.: Algorithms, numerical optimization, and constraints. In: Proc. of the 6th International Conference on Genetic Agorithms, pp. 151–158. Morgan Kauffman, San Mateo (1995)

    Google Scholar 

  19. Deb, K.: An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering 186(2-4), 311–338 (2000)

    Article  MATH  Google Scholar 

  20. Jili, T., Ning, W.: DNA computing based RNA genetic algorithm with applications in parameter estimation of chemical engineering processes. Computers and Chemical Engineering 31(12), 1602–1618 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tao, J., Chen, X., Zhu, Y. (2010). Constraint Multi-objective Automated Synthesis for CMOS Operational Amplifier. In: Li, K., Fei, M., Jia, L., Irwin, G.W. (eds) Life System Modeling and Intelligent Computing. ICSEE LSMS 2010 2010. Lecture Notes in Computer Science, vol 6329. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15597-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15597-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15596-3

  • Online ISBN: 978-3-642-15597-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics