Skip to main content

New Algorithms for Computing Primary Decomposition of Polynomial Ideals

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6327))

Abstract

We propose a new algorithm and its variant for computing a primary decomposition of a polynomial ideal. The algorithms are based on the Shimoyama-Yokoyama algorithm [17] in the sense that all the isolated primary components Q 1,...,Q r of an ideal I are first computed from the minimal associated primes of I. In order to extract the remaining primary components we use I:Q where Q = Q 1 ∩ ⋯ ∩ Q r . Our experiment shows that the new algorithms can efficiently decompose some ideals which are hard to be decomposed by any of known algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Risa/Asir, A.: computer algebra system, http://www.math.kobe-u.ac.jp/Asir/asir.html

  2. Macaulay 2 home page, http://www.math.uiuc.edu/Macaulay2/

  3. OpenXM committers, OpenXM, a project to integrate mathematical software systems (1998-2010), http://www.openxm.org

  4. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-1 — A computer algebra system for polynomial computations, http://www.singular.uni-kl.de/

  5. Bahloul, R., Oaku, T.: Local Bernstein-Sato ideals: algorithm and examples. J. Symb. Comp. 45, 46–59 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Decker, W., Greuel, G.-M., Pfister, G.: Primary decomposition: Algorithms and comparisons. In: Algorithmic Algebra and Number Theory, pp. 187–220. Springer, Heidelberg (1998)

    Google Scholar 

  7. Diaconis, P., Eisenbud, D., Sturmfels, B.: Lattice walks and primary decomposition. In: Sagan, B., Stanley, R. (eds.) Mathematical Essays in Honor of Gian-Carlo Rota, pp. 173–194. Birkhäuser, Basel (1998)

    Google Scholar 

  8. Eisenbud, D., Huneke, C., Vasconcelos, W.: Direct methods for primary decomposition. Invent. Math. 110, 207–235 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Eisenbud, D., Sturmfels, B.: Binomial Ideals. Duke Math. J. 84, 1–45 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gianni, P., Trager, B., Zacharias, G.: Gröbner basis and primary decomposition of polynomial ideals. J. Symb. Comp. 6, 149–167 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hoşten, S., Shapiro, J.: Primary Decomposition of Lattice Basis Ideals. J. Symb. Comp. 29, 625–639 (2000)

    Article  MATH  Google Scholar 

  12. Laplagne, S.: An Algorithm for the Computation of the Radical of an Ideal. In: Proc. ISSAC 2006, pp. 191–195. ACM Press, New York (2006)

    Chapter  Google Scholar 

  13. Maekawa, M., Noro, M., Ohara, K., Takayama, N., Tamura, Y.: The Design and Implementation of OpenXM-RFC 100 and 101. In: Proc. ASCM 2001, pp. 102–111. World Scientific, Singapore (2001)

    Google Scholar 

  14. Nishiyama, K., Noro, M.: Stratification associated with local b-functions. J. Symb. Comp. 45, 462–480 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Oaku, T.: Algorithms for b-Functions, Restrictions, and Algebraic Local Cohomology Groups of D-Modules. Advances in Applied Mathematics 19, 61–105 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Shibuta, T.: An algorithm for computing multiplier ideals (2010) (preprint), arXiv:0807.4302v6

    Google Scholar 

  17. Shimoyama, T., Yokoyama, K.: Localization and Primary Decomposition of Polynomial ideals. J. Symb. Comp. 22, 247–277 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shioda, T.: Gröbner basis, Mordell-Weill lattices and deformation of singularities, II. Proc. Japan Acad. Ser. A Math. Sci. 86(2), 27–32 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sturmfels, B.: Solving Systems of Polynomial Equations. In: CBMS Regional Conference Series in Mathematics, vol. 97. AMS, Providence (2002)

    Google Scholar 

  20. Vasconcelos, W.: Computational Methods in Commutative Algebra and Algebraic Geometry. In: Algorithms and Computation in Mathematics, vol. 2. Springer, Heidelberg (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Noro, M. (2010). New Algorithms for Computing Primary Decomposition of Polynomial Ideals. In: Fukuda, K., Hoeven, J.v.d., Joswig, M., Takayama, N. (eds) Mathematical Software – ICMS 2010. ICMS 2010. Lecture Notes in Computer Science, vol 6327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15582-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15582-6_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15581-9

  • Online ISBN: 978-3-642-15582-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics