Advertisement

Non-local Characterization of Scenery Images: Statistics, 3D Reasoning, and a Generative Model

  • Tamar Avraham
  • Michael Lindenbaum
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6315)

Abstract

This work focuses on characterizing scenery images. We semantically divide the objects in natural landscape scenes into background and foreground and show that the shapes of the regions associated with these two types are statistically different. We then focus on the background regions. We study statistical properties such as size and shape, location and relative location, the characteristics of the boundary curves and the correlation of the properties to the region’s semantic identity. Then we discuss the imaging process of a simplified 3D scene model and show how it explains the empirical observations. We further show that the observed properties suffice to characterize the gist of scenery images, propose a generative parametric graphical model, and use it to learn and generate semantic sketches of new images, which indeed look like those associated with natural scenery.

Keywords

Natural Image Background Region Land Region Foreground Object Aerial Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

978-3-642-15555-0_8_MOESM1_ESM.pdf (282 kb)
Electronic Supplementary Material (282 KB)

References

  1. 1.
    Edwards, B.: Drawing on the Right Side of the Brain. Tarcher Publishing (1979)Google Scholar
  2. 2.
    Lee, A.B., Mumford, D., Huang, J.: Occlusion models for natural images: A statistical study of a scale-invariant dead leaves model. IJCV 41, 35–59 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Srivastava, A., Lee, A., Simoncelli, E.: On advances in statistical modeling of natural images. Journal of Mathematical Imaging and Vision 18, 17–33 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Heiler, M., Schnörr, C.: Natural image statistics for natural image segmentation. IJCV 63, 5–19 (2005)CrossRefGoogle Scholar
  5. 5.
    Ruderman, D.: The statistics of natural images. Computation in Neural Systems 5, 517–548 (1994)zbMATHCrossRefGoogle Scholar
  6. 6.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV (2001)Google Scholar
  7. 7.
    Russell, B., Torralba, A.: Labelme: a database and web-based tool for image annotation. IJCV 77, 157–173 (2008)CrossRefGoogle Scholar
  8. 8.
    Bileschi, S.: StreetScenes: Towards scene understanding in still images. Ph.D. Thesis, EECS, MIT (2006)Google Scholar
  9. 9.
    Rimey, R.D., Brown, C.M.: Control of selective perception using bayes nets and decision theory. IJCV 12, 173–207 (1994)CrossRefGoogle Scholar
  10. 10.
    Desai, C., Ramanan, D., Fowlkes, C.: Discriminative models for multi-class object layout. ICCV (2009)Google Scholar
  11. 11.
    Rabinovich, A., Vedaldi, A., Galleguillos, C., Wiewiora, E., Belongie, S.: Objects in context. ICCV (2007)Google Scholar
  12. 12.
    Gupta, A., Davis, L.S.: Beyond nouns: Exploiting prepositions and comparative adjectives for learning visual classifiers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 16–29. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    He, X., Zemel, R.S., Ray, D.: Learning and incorporating top-down cues in image segmentation. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 338–351. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Torralba, A.B.: Contextual priming for object detection. IJCV 53, 169–191 (2003)CrossRefGoogle Scholar
  15. 15.
    Russell, B.C., Torralba, A.B., Liu, C., Fergus, R., Freeman, W.T.: Object recognition by scene alignment. NIPS (2007)Google Scholar
  16. 16.
    Heitz, G., Koller, D.: Learning spatial context: Using stuff to find things. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 30–43. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Vecera, S., Vogel, E., Woodman, G.: Lower region: A new cue for figure-ground assignment. Journal of Experimental Psychology: General 131, 194–205 (2002)CrossRefGoogle Scholar
  18. 18.
    Fowlkes, C., Martin, D., Malik, J.: Local figureground cues are valid for natural images. Journal of Vision 7, 1–9 (2007)CrossRefGoogle Scholar
  19. 19.
    Torralba, A.B., Oliva, A.: Depth estimation from image structure. IEEE T-PAMI 24, 1226–1238 (2002)Google Scholar
  20. 20.
    Hoiem, D., Efros, A.A., Hebert, M.: Recovering surface layout from an image. IJCV 75, 151–172 (2007)CrossRefGoogle Scholar
  21. 21.
    Nedović, V., Smeulders, A., Redert, A.: Depth information by stage classification. In: ICCV (2007)Google Scholar
  22. 22.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. IJCV 42, 145–175 (2001)zbMATHCrossRefGoogle Scholar
  23. 23.
    (Supplimentary material)Google Scholar
  24. 24.
    Abbott, E.A.: Flatland: A Romance of Many Dimensions (1884)Google Scholar
  25. 25.
    Fischer, G., Nachtergaele, F., Prieler, S., van Velthuizen, H., Verelst, L., Wiberg, D.: Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2007). IIASA, Laxenburg, Austria and FAO, Rome, Italy (2007)Google Scholar
  26. 26.
    Lanitis, A., Taylor, C.J., Cootes, T.F.: Automatic interpretation and coding of face images using flexible models. IEEE-PAMI 19, 743–756 (1997)Google Scholar
  27. 27.
    Vogel, J., Schiele, B.: Semantic modeling of natural scenes for content-based image retrieval. IJCV 72, 133–157 (2007)CrossRefGoogle Scholar
  28. 28.
    van de Sande, K., Gevers, T., Snoek, C.: Evaluating color descriptors for object and scene recognition. IEEE T-PAMI 99 (2009)Google Scholar
  29. 29.
    Vicente, S., Kolmogorov, V., Rother, C.: Graph cut based image segmentation with connectivity priors. In: CVPR (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Tamar Avraham
    • 1
  • Michael Lindenbaum
    • 1
  1. 1.Computer science departmentTechnion - I.I.T.HaifaIsrael

Personalised recommendations