Advertisement

Photo-Consistent Planar Patches from Unstructured Cloud of Points

  • Roberto Toldo
  • Andrea Fusiello
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6315)

Abstract

Planar patches are a very compact and stable intermediate representation of 3D scenes, as they are a good starting point for a complete automatic reconstruction of surfaces. This paper presents a novel method for extracting planar patches from an unstructured cloud of points that is produced by a typical structure and motion pipeline. The method integrates several constraints inside J-linkage, a robust algorithm for multiple models fitting. It makes use of information coming both from the 3D structure and the images. Several results show the effectiveness of the proposed approach.

Keywords

Digital Surface Model Jaccard Distance Planar Patch Visibility Constraint Coplanar Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

978-3-642-15555-0_43_MOESM1_ESM.zip (9.2 mb)
Electronic Supplementary Material (9,929 KB)

References

  1. 1.
    Taylor, C., Debevec, P., Malik, J.: Reconstructing polyhedral models of architectural scenes from photographs. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1065, pp. 659–670. Springer, Heidelberg (1996)Google Scholar
  2. 2.
    Cipolla, R., Robertson, D., Boyer, E.: Photobuilder–3d models of architectural scenes from uncalibrated images. In: IEEE Int. Conf. on Multimedia Computing and Systems, vol. 1, pp. 25–31 (1999)Google Scholar
  3. 3.
    Wilczkowiak, M., Sturm, P., Boyer, E.: Using geometric constraints through parallelepipeds for calibration and 3D modeling. IEEE transactions on pattern analysis and machine intelligence, 194–207 (2005)Google Scholar
  4. 4.
    van den Hengel, A., Dick, A., Thormählen, T., Ward, B., Torr, P.: VideoTrace: rapid interactive scene modelling from video. In: Proceedings of the SIGGRAPH conference, vol. 26, ACM, New York (2007)Google Scholar
  5. 5.
    Schindler, K., Bauer, J.: A model-based method for building reconstruction. In: IEEE International Workshop on Higher-Level Knowledge in 3D Modeling and Motion Analysis, pp. 74–82 (2003)Google Scholar
  6. 6.
    Alegre, F., Dellaert, F.: A probabilistic approach to the semantic interpretation of building facades. Technical report, Georgia Institute of Technology (2004)Google Scholar
  7. 7.
    Dick, A., Torr, P., Cipolla, R.: Modelling and interpretation of architecture from several images. International Journal of Computer Vision 60, 111–134 (2004)CrossRefGoogle Scholar
  8. 8.
    Brenner, C., Ripperda, N.: Extraction of facades using rjM-CMC and constraint equations. In: Photogrammetric Computer Vision, pp. 155–160 (2006)Google Scholar
  9. 9.
    Tiana, Y., Zhub, Q., Gerkea, M., Vosselmana, G.: Knowledge-Based Topological Reconstruction for Building Façade Surface Patches. In: 3D Virtual Reconstruction and Visualization of Complex Architectures (3D-ARCH), vol. 18 (2009)Google Scholar
  10. 10.
    Han, F., Zhu, S.: Bayesian reconstruction of 3d shapes and scenes from a single image. In: Workshop on High Level Knowledge in 3D Modeling and Motion, vol. 2 (2003)Google Scholar
  11. 11.
    Muller, P., Zeng, G., Wonka, P., Van Gool, L.: Image-based procedural modeling of facades. ACM Transactions on Graphics 26, 85 (2007)CrossRefGoogle Scholar
  12. 12.
    Hilton, A.: Scene modelling from sparse 3D data. Image and Vision Computing 23(10), 900–920 (2005)CrossRefGoogle Scholar
  13. 13.
    Morris, D., Kanade, T.: Image-consistent surface triangulation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 1999), vol. 1. IEEE Computer Society, Los Alamitos (2000)Google Scholar
  14. 14.
    Nakatsuji, A., Sugaya, Y., Kanatani, K.: Optimizing a triangular mesh for shape reconstruction from images. IEICE Transactions on Information and Systems, 2269–2276 (2005)Google Scholar
  15. 15.
    Cooper, O., Campbell, N., Gibson, D.: Automatic augmentation and meshing of sparse 3D scene structure. In: Seventh IEEE Workshops on Application of Computer Vision, vol. 1 (2005)Google Scholar
  16. 16.
    Torr, P., Zisserman, A.: MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding 78, 138–156 (2000)CrossRefGoogle Scholar
  17. 17.
    Bartoli, A.: A random sampling strategy for piecewise planar scene segmentation. Computer Vision and Image Understanding 105, 42–59 (2007)CrossRefGoogle Scholar
  18. 18.
    Moser, S., Wahl, R., Klein, R.: Out-of-Core Topologically constrained simplification for city modeling from digital surface models. In: 3D Virtual Reconstruction and Visualization of Complex Architectures (3D-ARCH), vol. 18 (2009)Google Scholar
  19. 19.
    Furukawa, Y., Curless, B., Seitz, S., Szeliski, R., Szeliski, R.: Towards Internet-scale Multi-view Stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), vol. 12 (2010)Google Scholar
  20. 20.
    Furukawa, Y., Curless, B., Seitz, S., Szeliski, R.: Reconstructing building interiors from images. In: Proceedings of the International Conference on Computer Vision (ICCV), pp. 80–87 (2009)Google Scholar
  21. 21.
    Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. In: SIGGRAPH: International Conference on Computer Graphics and Interactive Techniques, pp. 835–846 (2006)Google Scholar
  22. 22.
    Farenzena, M., Fusiello, A., Gherardi, R.: Structure-and-Motion Pipeline on a Hierarchical Cluster Tree. In: 3-D Digital Imaging and Modeling (3DIM) (2009)Google Scholar
  23. 23.
    Toldo, R., Fusiello, A.: Robust multiple structures estimation with J-linkage. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 537–547. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Myatt, D.R., Torr, P.H.S., Nasuto, S.J., Bishop, J.M., Craddock, R.: Napsac: High noise, high dimensional robust estimation - it’s in the bag. In: British Machine Vision Conference (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Roberto Toldo
    • 1
  • Andrea Fusiello
    • 1
  1. 1.Dipartimento di InformaticaUniversità di VeronaVeronaItaly

Personalised recommendations