Advertisement

Conjugate Gradient Bundle Adjustment

  • Martin Byröd
  • Kalle Åström
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6312)

Abstract

Bundle adjustment for multi-view reconstruction is traditionally done using the Levenberg-Marquardt algorithm with a direct linear solver, which is computationally very expensive. An alternative to this approach is to apply the conjugate gradients algorithm in the inner loop. This is appealing since the main computational step of the CG algorithm involves only a simple matrix-vector multiplication with the Jacobian. In this work we improve on the latest published approaches to bundle adjustment with conjugate gradients by making full use of the least squares nature of the problem. We employ an easy-to-compute QR factorization based block preconditioner and show how a certain property of the preconditioned system allows us to reduce the work per iteration to roughly half of the standard CG algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building rome in a day. In: Proc. 12th Int. Conf. on Computer Vision, Kyoto, Japan (2009)Google Scholar
  2. 2.
    Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from Internet photo collections. Int. Journal of Computer Vision 80, 189–210 (2008)CrossRefGoogle Scholar
  3. 3.
    Mordohai, A.F.: Towards urban 3d reconstruction from video (2006)Google Scholar
  4. 4.
    Cornelis, N., Leibe, B., Cornelis, K., Gool, L.V.: 3d urban scene modeling integrating recognition and reconstruction. Int. Journal of Computer Vision 78, 121–141 (2008)CrossRefGoogle Scholar
  5. 5.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  6. 6.
    Triggs, W., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle adjustment: A modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, p. 298. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Lourakis, M.I.A., Argyros, A.A.: Sba: A software package for generic sparse bundle adjustment. ACM Trans. Math. Softw. 36, 1–30 (2009)CrossRefGoogle Scholar
  8. 8.
    Byröd, M., Åström, K.: Bundle adjustment using conjugate gradients with multiscale preconditioning. In: Proc. British Machine Vision Conference, London, United Kingdom (2009)Google Scholar
  9. 9.
    Young, D.M.: Iterative solution of large linear systems. Academic Press, New York (1971)zbMATHGoogle Scholar
  10. 10.
    Nielsen, H.B.: Damping parameter in marquardt’s method. Technical Report IMM-REP-1999-05, Technical University of Denmark (1999)Google Scholar
  11. 11.
    Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards 49, 409–436 (1952)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  13. 13.
    Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. The Computer Journal 7, 149–154 (1964)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Björck, Å.: Numerical methods for least squares problems. SIAM, Philadelphia (1996)zbMATHGoogle Scholar
  15. 15.
    Paige, C.C., Saunders, M.A.: Lsqr: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8, 43–71 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Nocedal, J., Wright, S.J.: Numerical optimization, 2nd edn. Springer, Berlin (2006)zbMATHGoogle Scholar
  17. 17.
    Golub, G.H., Manneback, P., Toint, P.L.: A comparison between some direct and iterative methods for certian large scale godetic least squares problems. SIAM J. Sci. Stat. Comput. 7, 799–816 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Reid, J.K.: The use of conjugate gradients for systems of linear equations possessing “property a”. SIAM Journal on Numerical Analysis 9, 325–332 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. International Journal of Computer Vision 80, 189–210 (2007)CrossRefGoogle Scholar
  20. 20.
    Snavely, N., Seitz, S.M., Szeliski, R.: Skeletal sets for efficient structure from motion. In: Proc. Conf. Computer Vision and Pattern Recognition, Anchorage, USA (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Martin Byröd
    • 1
  • Kalle Åström
    • 1
  1. 1.Centre for Mathematical SciencesLund UniversityLundSweden

Personalised recommendations