A Dual Theory of Inverse and Forward Light Transport

  • Jiamin Bai
  • Manmohan Chandraker
  • Tian-Tsong Ng
  • Ravi Ramamoorthi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6312)


Inverse light transport seeks to undo global illumination effects, such as interreflections, that pervade images of most scenes. This paper presents the theoretical and computational foundations for inverse light transport as a dual of forward rendering. Mathematically, this duality is established through the existence of underlying Neumann series expansions. Physically, we show that each term of our inverse series cancels an interreflection bounce, just as the forward series adds them. While the convergence properties of the forward series are well-known, we show that the oscillatory convergence of the inverse series leads to more interesting conditions on material reflectance. Conceptually, the inverse problem requires the inversion of a large transport matrix, which is impractical for realistic resolutions. A natural consequence of our theoretical framework is a suite of fast computational algorithms for light transport inversion – analogous to finite element radiosity, Monte Carlo and wavelet-based methods in forward rendering – that rely at most on matrix-vector multiplications. We demonstrate two practical applications, namely, separation of individual bounces of the light transport and fast projector radiometric compensation to display images free of global illumination artifacts in real-world environments.


Dual Theory Global Illumination Light Transport High Dynamic Range Image Indirect Illumination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

978-3-642-15552-9_22_MOESM1_ESM.pdf (7.3 mb)
Electronic Supplementary Material (7,521 KB)


  1. 1.
    Arvo, J., Torrance, K., Smits, B.: A framework for the analysis of error in global illumination algorithms. In: SIGGRAPH 1994, pp. 75–84 (1994)Google Scholar
  2. 2.
    Bai, J., Chandraker, M., Ng, T.-T., Ramamoorthi, R.: A dual theory of inverse and forward light transport. Technical Report UCB/EECS-2010-101, UC Berkeley (June 2010)Google Scholar
  3. 3.
    Bimber, O., Grundhoefer, A., Zeidler, T., Danch, D., Kapakos, P.: Compensating indirect scattering for immersive and semi-immersive projection displays. In: IEEE Virtual Reality, pp. 151–158 (2006)Google Scholar
  4. 4.
    Cohen, M., Wallace, J.: Radiosity and Realistic Image Synthesis. Academic Press, London (1993)zbMATHGoogle Scholar
  5. 5.
    Ding, Y., Xiao, J., Tan, K.-H., Yu, J.: Catadioptric projectors. In: CVPR (2009)Google Scholar
  6. 6.
    Fujii, K., Grossberg, M., Nayar, S.: A Projector-camera System with Real-time Photometric Adaptation for Dynamic Environments. In: CVPR 2005, pp. 814–821 (2005)Google Scholar
  7. 7.
    Garg, G., Talvala, E., Levoy, M., Lensch, H.: Symmetric photography: Exploiting data-sparseness in reflectance fields. In: EGSR 2006, pp. 251–262 (2006)Google Scholar
  8. 8.
    Gortler, S., Schröder, P., Cohen, M., Hanrahan, P.: Wavelet radiosity. In: SIGGRAPH 1993, pp. 221–230 (1993)Google Scholar
  9. 9.
    Kajiya, J.: The rendering equation. In: SIGGRAPH 1986, pp. 143–150 (1986)Google Scholar
  10. 10.
    Marschner, S.: Inverse Rendering for Computer Graphics. PhD thesis, Cornell Univ. (1998)Google Scholar
  11. 11.
    Masselus, V., Peers, P., Dutre, P., Willems, Y.: Relighting with 4D incident light fields. ACM Trans. on Graphics (SIGGRAPH 2003) 22(3), 613–620 (2003)CrossRefGoogle Scholar
  12. 12.
    Mukaigawa, Y., Kakinuma, T., Ohta, Y.: Analytical compensation of inter-reflection for pattern projection. In: ACM VRST, pp. 265–268 (2006)Google Scholar
  13. 13.
    Nayar, S., Krishnan, G., Grossberg, M., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. ACM Trans. on Graphics (SIGGRAPH 2006) 25(3), 935–944 (2006)CrossRefGoogle Scholar
  14. 14.
    Nayar, S., Peri, H., Grossberg, M., Belhumeur, P.: A Projection System with Radiometric Compensation for Screen Imperfections. In: IEEE PROCAMS (2003)Google Scholar
  15. 15.
    Ng, T.-T., Pahwa, R.S., Bai, J., Quek, Q.-S., Tan, K.-H.: Radiometric Compensation Using Stratified Inverses. In: ICCV (2009)Google Scholar
  16. 16.
    Peers, P., Berge, K., Matusik, W., Ramamoorthi, R., Lawrence, J., Rusinkiewicz, S., Dutre, P.: A compact factored representation of heterogeneous subsurface scattering. ACM Trans. on Graphics (SIGGRAPH 2006) 25(3), 746–753 (2006)CrossRefGoogle Scholar
  17. 17.
    Ramamoorthi, R., Hanrahan, P.: A signal-processing framework for inverse rendering. In: SIGGRAPH 2001, pp. 117–128 (2001)Google Scholar
  18. 18.
    Seitz, S., Matsushita, Y., Kutulakos, K.: A theory of inverse light transport. In: ICCV 2005, pp. 1440–1447 (2005)Google Scholar
  19. 19.
    Sen, P., Chen, B., Garg, G., Marschner, S., Horowitz, M., Levoy, M., Lensch, H.: Dual Photography. ACM Trans. on Graphics (SIGGRAPH) 24(3), 745–755 (2005)CrossRefGoogle Scholar
  20. 20.
    Veach, E.: Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis, Stanford University (1998)Google Scholar
  21. 21.
    Wetzstein, G., Bimber, O.: Radiometric Compensation through Inverse Light Transport. In: Pacific Conf. on Comp. Graphics and Appl., pp. 391–399 (2007)Google Scholar
  22. 22.
    Yu, Y., Debevec, P., Malik, J., Hawkins, T.: Inverse global illumination: Recovering reflectance models of real scenes from photographs. In: SIGGRAPH 1999, pp. 215–224 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jiamin Bai
    • 1
  • Manmohan Chandraker
    • 1
  • Tian-Tsong Ng
    • 2
  • Ravi Ramamoorthi
    • 1
  1. 1.University of CaliforniaBerkeley
  2. 2.Institute for Infocomm ResearchSingapore

Personalised recommendations