Advertisement

Ring-Light Photometric Stereo

  • Zhenglong Zhou
  • Ping Tan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6312)

Abstract

We propose a novel algorithm for uncalibrated photometric stereo. While most of previous methods rely on various assumptions on scene properties, we exploit constraints in lighting configurations. We first derive an ambiguous reconstruction by requiring lights to lie on a view centered cone. This reconstruction is upgraded to Euclidean by constraints derived from lights of equal intensity and multiple view geometry. Compared to previous methods, our algorithm deals with more general data and achieves high accuracy. Another advantage of our method is that we can model weak perspective effects of lighting, while previous methods often assume orthographical illumination. We use both synthetic and real data to evaluate our algorithm. We further build a hardware prototype to demonstrate our approach.

Keywords

Planar Rotation Lighting Direction Prototype Device Photometric Stereo Depth Discontinuity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Woodham, R.: Photometric stereo: A reflectance map technique for determining surface orientation from image intensities. In: Proc. SPIE 22nd Annual Technical Symposium, pp. 136–143 (1978)Google Scholar
  2. 2.
    Hayakawa, H.: Photometric stereo under a light source with arbitrary motion. J. Optical Society of America A 11, 3079–3089 (1994)CrossRefGoogle Scholar
  3. 3.
    Belhumeur, P.N., Kriegman, D.J., Yuille, A.L.: The bas-relief ambiguity. Int. Journal of Computer Vision 35, 33–44 (1999)CrossRefGoogle Scholar
  4. 4.
    Drbohlav, O., Sara, R.: Specularities reduce ambiguity of uncalibrated photometric stereo. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 46–60. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Drbohlav, O., Chantler, M.: Can two specular pixels calibrate photometric stereo? In: Proc. ICCV, vol. 2, pp. 1850–1857 (2005)Google Scholar
  6. 6.
    Chandraker, M.K., Kahl, F., Kriegman, D.: Reflections on the generalized bas-relief ambiguity. In: Proc. of CVPR (2005)Google Scholar
  7. 7.
    Basri, R., Jacobs, D., Kemelmacher, I.: Photometric stereo with general, unknown lighting. Int. J. Comput. Vision 72, 239–257 (2007)CrossRefGoogle Scholar
  8. 8.
    Alldrin, N., Mallick, S.P., Kriegman, D.J.: Resolving the generalized bas-relief ambiguity by entropy minimization. In: Proc. of CVPR (2007)Google Scholar
  9. 9.
    Tan, P., Mallick, S.P., Quan, L., Kriegman, D.J., Zickler, T.: Isotropy, reciprocity and the generalized bas-relief ambiguity. In: Proc. of CVPR (2007)Google Scholar
  10. 10.
    Tan, P., Zickler, T.: A projective framework for radiometric image analysis. In: Proc. of CVPR (2009)Google Scholar
  11. 11.
    Shi, B., Matsushita, Y., Wei, Y., Tan, P.: Self-calibrating photometric stereo. In: Proc. of CVPR (2010)Google Scholar
  12. 12.
    Drbohlav, O., Chantler, M.: On optimal light configurations in photometric stereo. In: Proc. ICCV (2005)Google Scholar
  13. 13.
    Alldrin, N., Kriegman, D.: Toward reconstructing surfaces with arbitrary isotropic reflectance: A stratified photometric stereo approach. In: Proc. ICCV (2007)Google Scholar
  14. 14.
    Alldrin, N., Zickler, T., Kriegman, D.: Photometric stereo with non-parametric and spatially-varying reflectance. In: Proc. of CVPR (2008)Google Scholar
  15. 15.
    Lim, J., Ho, J., Yang, M.H., Kriegman, D.: Passive photometric stereo from motion. In: Proc. ICCV (2005)Google Scholar
  16. 16.
    Joshi, N., Kriegman, D.: Shape from varying illumination and viewpoint. In: Proc. ICCV (2007)Google Scholar
  17. 17.
    Higo, T., Matsushita, Y., Joshi, N., Ikeuchi, K.: A hand-held photometric stereo camera for 3-d modeling. In: Proc. ICCV (2009)Google Scholar
  18. 18.
    Coxeter, H.S.M.: Introduction to Geometry, 2nd edn. Wiley, Chichester (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zhenglong Zhou
    • 1
  • Ping Tan
    • 1
  1. 1.Department of Electrical & Computer EngineeringNational University of Singapore 

Personalised recommendations