Face Recognition with Patterns of Oriented Edge Magnitudes

  • Ngoc-Son Vu
  • Alice Caplier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6311)


This paper addresses the question of computationally inexpensive yet discriminative and robust feature sets for real-world face recognition. The proposed descriptor named Patterns of Oriented Edge Magnitudes (POEM) has desirable properties: POEM (1) is an oriented, spatial multi-resolution descriptor capturing rich information about the original image; (2) is a multi-scale self-similarity based structure that results in robustness to exterior variations; and (3) is of low complexity and is therefore practical for real-time applications. Briefly speaking, for every pixel, the POEM feature is built by applying a self-similarity based structure on oriented magnitudes, calculated by accumulating a local histogram of gradient orientations over all pixels of image cells, centered on the considered pixel. The robustness and discriminative power of the POEM descriptor is evaluated for face recognition on both constrained (FERET) and unconstrained (LFW) datasets. Experimental results show that our algorithm achieves better performance than the state-of-the-art representations. More impressively, the computational cost of extracting the POEM descriptor is so low that it runs around 20 times faster than just the first step of the methods based upon Gabor filters. Moreover, its data storage requirements are 13 and 27 times smaller than those of the LGBP (Local Gabor Binary Patterns) and HGPP (Histogram of Gabor Phase Patterns) descriptors respectively.


Face Recognition Recognition Rate Face Image Local Binary Pattern Gabor Wavelet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE TPAMI 27, 1615–1630 (2005)Google Scholar
  2. 2.
    Zhao, W., Chellappa, R., Corporation, S., Rosenfeld, A., Phillips, P.J.: Face recognition: A literature survey. ACM Computing Surveys (2000)Google Scholar
  3. 3.
    Zhang, W., Shan, S., Gao, W., Chen, X., Zhang, H.: Local gabor binary pattern histogram sequence (lgbphs): a novel non-statistical model for face representation and recognition. In: ICCV, vol. 1, pp. 786–791 (2005)Google Scholar
  4. 4.
    Zhang, B., Shan, S.S., Chen, X.: Gao: Histogram of gabor phase patterns (hgpp): A novel object representation approach for face recognition. IEEE Trans. on Image Processing 16, 57–68 (2007)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, Washington, DC, USA, pp. 886–893. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  7. 7.
    Ke, Y., Sukthankar, R.: Pca-sift: A more distinctive representation for local image descriptors. In: CVPR (2004)Google Scholar
  8. 8.
    Liu, C., Wechsler, H.: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans. on Image Processing 11, 467–476 (2002)CrossRefGoogle Scholar
  9. 9.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. Journal of Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  10. 10.
    Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model (2008)Google Scholar
  11. 11.
    Heisele, B., Ho, P., Wu, J., Poggio, T.: Face recognition: component-based versus global approaches. Computer Vision and Image Understanding 91, 6–21 (2003)CrossRefGoogle Scholar
  12. 12.
    Zou, J., Ji, Q., Nagy, G.: A comparative study of local matching approach for face recognition. IEEE Trans. on Image Processing 16(10), 2617–2628 (2007)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Tan, X., Triggs, B.: Fusing gabor and lbp feature sets for kernel-based face recognition. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS, vol. 4778, pp. 235–249. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Pinto, N., DiCarlo, J., Cox, D.: Establishing good benchmarks and baselines for face recognition. In: Faces in Real-Life Images Workshop in ECCV (2008)Google Scholar
  15. 15.
    Pinto, N., DiCarlo, J., Cox, D.: How far can you get a modern face recognition test set using only simple features? In: CVPR (2009)Google Scholar
  16. 16.
    Wolf, L., Hassner, T., Taigman, Y.: Descriptor based methods in the wild. In: Real-Life Images workshop at ECCV (2008)Google Scholar
  17. 17.
    Wolf, L., Hassner, T., Taigman, Y.: Similarity scores based on background samples. In: ACCV (2009)Google Scholar
  18. 18.
    Choi, W., Tse, S., Wong, K., Lam, K.: Simplified gabor wavelets for human face recognition. Pattern Recognition 41, 1186–1199 (2008)zbMATHCrossRefGoogle Scholar
  19. 19.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE TPAMI 24, 971–987 (2002)Google Scholar
  20. 20.
    Heikkila, M., Pietikainen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recognition 42, 432–436 (2009)CrossRefGoogle Scholar
  21. 21.
    Chen, H.F., Belhumeur, P.N., Jacobs, D.W.: In: search of illumination invariants. In: CVPR (2000)Google Scholar
  22. 22.
    Ling, H., Soatto, S., Ramanathan, N., Jacobs, D.: A study of face recognition as people age. In: ICCV (2007)Google Scholar
  23. 23.
    Viola, P., Jones, M.: Robust real-time face detection. Int. Journal of Computer Vision 57, 137–154 (2004)CrossRefGoogle Scholar
  24. 24.
    Phillips, J., Moon, H., Rizvi, S.A., et al.: The feret evaluation methodology for face-recognition algorithms. IEEE TPAMI 22, 1090–1104 (2000)Google Scholar
  25. 25.
    Huang, G.B., Manu Ramesh, T.B., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical report, University of Massachusetts, Amherst (2007)Google Scholar
  26. 26.
    Meyers, E., Wolf, L.: Using biologically inspired features for face processing. Int. Journal of Computer Vision 76, 93–104 (2008)CrossRefGoogle Scholar
  27. 27.
    Chen, L., Liao, H., Lin, J., Han, C.: Why recognition in a statistics-based face recognition system should be based on the pure face portion: a probabilistic decision-based proof. Pattern Recognition 34(5), 1393–1403 (2001)zbMATHCrossRefGoogle Scholar
  28. 28.
    Vu, N., Caplier, A.: Illumination-robust face recognition using the retina modelling. In: ICIP (2009)Google Scholar
  29. 29.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ngoc-Son Vu
    • 1
    • 2
  • Alice Caplier
    • 2
  1. 1.Vesalis Sarl, Clermont FerrandFrance
  2. 2.Gipsa-lab, Grenoble INPFrance

Personalised recommendations